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Momentum, kinetic energy and reduced wavelength
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Spatial Resolution
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That means that I need e- with 100
MeV/c to investigate the nucleus
size (fm)



Elastic Electron Scattering

The electron elastic scattering serves to investigate the electric
charge distribution of nucleus and nucleons.

The elastic scattering is carried out by a virtual Photon.

Electrons were chosen because they are pointlike 

and interact with the target via the electromagnetic 

interaction



Kinematic of the Electron Scattering
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The elastic scattering does not modify the invariant mass of the scattering
particles:

Since experimentally the scattered nucleus is not identified one assigns:

K=N
Taking the 4-vectors:
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The target  stays still in the lab system before the impact

For relativistic electrons (E>>mec2) the last term can be neglected

Where θ is the scattering angle.

Which informations about the target particle can be extracted from the
measurement of the scattering angle?

For this purpose one has to compute the differential cross-section dσ/dΩ



(Povh, ..., T&K)

Energy of electrons scattered by a nucleus,
as a function of scattering angle



Fermi Golden Rule
The probability that a reaction between an incoming beam particle and
a target takes place depends on the Interaction Potential (Hint)
between the two particles. Given the two wave functions corresponding
to the incoming (ψΙ) and outgoing electron (ψF), one can calculate the
Matrix Element MFI as:
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Where Hint is the hamiltonian operator of the corresponding interaction.
Furthermore the reaction rate depends on the possible number of final states
of the outgoing particle. To calculate this number one has to consider that
each particle occupies a volume in the phase space equal to:
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Together with the Volume V we consider the Momentum interval ‚p+dp‘ and its
correlated volume in the Momentum space:
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We can calculate the total number of possible states as:
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One can write the density of the final state ρ(E‘) in the energy interval dE‘:

MFI and ρ(E) are the main constituents of the Fermi Golden Rule that defines the
reaction rate W per beam and target particle like:
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One can write the reaction  Rate (R) per Beam (Nb) and target particle (Na):

Where I is the number of incoming particle per time unit
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Using the Fermi golden Rule:

If we consider relativistic electrons, we have: E‘=p‘c  and va=v‘=c

We can define the phase factor ρ(E‘)
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If we considering the scattering in the solid angle dΩ

In order to calculate the Matrixelement MFI we have to define
an incoming and outcoming wave

Born Approximation



If we consider a Charge e inside an electric potential φ(x), the Interaction
operator Hint will be:

Momentum transfer

Using the Green Theorem for u and v being two scalar functions which go to 0 for
large r:
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In our case one can write:



If we consider a Charge e inside an electric potential φ(x), the Interaction
operator Hint will be:

Momentum transfer

Using the Green Theorem for u and v being two scalar functions which go to 0 for
large r:
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Poisson equation:

If we consider a normalized charge distribution f(x) we can write

with

F(q) is the Fourier Transformation of the Charge distribution:
Form Factor
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Rutherford Scattering
•Pointlike charge that scatter on pointlike target (No inner structure->f(x)=δ(x))
•The target is heavy and hence the recoil energy can be neglected
• Spin 0 particles
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Helicity suppression of electron backscattering

Suppresed at 180°

!!!The recoil of the
target nucleus is
neglected!!



Form Factor of the Nuclei

small big

Electron scattering with a nucleus
with a charge distribution. The
momentum is carried by the photon
which wave length determines the
accuracy of the measurement

Photon couples to the total
charge of the nucleus

Photon couples to
only some fraction
of the charge

For pointlike
chargeFor symmetric charge distributions the Form

Factor depends only on the absolute value of
the momentum q.



Differential Cross section for 
             electron scattering from 12C: 

(Povh, ..., P & N)

First experiments in
the 50s at SLAC

Dependency of the
Mott cross-section
from the angle

The charachteristic
interference picture shows
the finite dimension of the
nucleus, but what about the
form?



Form factors   (Povh..., Particles & nuclei)

Charge Distribution Form Factor F(q2)

For the Homogeneus sphere the
first minimum ist at:

One can determine the size of
the nucleus R.



Nuclear charge density    ↔    nucleon (number)density

(Bopp, Kerne...)

(Segrè, Nuclei & particles)



Differential cross section for
        electron scattering from 40Ca and 48Ca:

(*10)

(:10)

(Povh, ..., P & N)

The Form Factor of
Isotopes is sligthly
different since the
neutron rich nuclei
present the minima for
smaller q values. Indeed
for equal number of
protons the nuclear
volume becomes bigger.



820 MeV

Electron spectrometer MAMI – B 
at the Mainz microtron

(Povh, ..., P & N)

12 m



Mean Squared Charge Radius
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Informations about the Nuclear radius can be extracted looking at
the behaviour of F(q2) for small q..

Since the charge distribution function f(q2) is normalized, one can define
the mean square charge radius as
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500 MeV Electrons:              10 meV neutrons: 
         atomic nuclei                    macromolecules
           (a few 10-15 m)                            (a few 10-9 m)

ILL annual report 1996 (soft matter)
                   www.ill.fr



Rosenbluth plot

Q2 = 2.5 GeV2/c2

The e-charge interacts also with the nuclear magnetic momentum
  

! 

µ = g
e

2M
"
h

2

! 

d"

d#

$ 

% 
& 

' 

( 
) 
spin1/ 2

=
d"

d#

$ 

% 
& 

' 

( 
) 
Mott

1+ 2* tan2
+

2

, 

- . 
/ 

0 1 
, * =

Q
2

4M
2
c
2

! 

! 

d"

d#

$ 

% 
& 

' 

( 
) =

d"

d#

$ 

% 
& 

' 

( 
) 
Mott

GE

2
(Q

2
) + *GM

2
(Q

2
)

1+ *
+ 2*GM

2
(Q

2
)tan

2 +

2

, 

- 
. 

/ 

0 
1 

! 

GE

p
(Q

2
= 0) =1 GE

n
(Q

2
= 0) = 0

GM

p
(Q

2
= 0) = 2.79 GM

n
(Q

2
= 0) = "1.91

GE(Q2) electric Formfactor

GM(Q2) magnetic Formfactor

slope

intercept Measuring the cross-sections for
different Q values one can extract the
GE/M(Q2) dependency



Electric and magnetic form factors of proton
and neutron
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For the proton radius:

Obtained from scattering experiments of e- on d

The  mean squared charge radius for the neutron can be determined using the scattering of slow
neutrons coming from a reactor to atomic electrons. In this way one obtains:
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Which means that inside the neutron we
have charge constituents (quarks) which
also have a magnetic momentum



Inelastic electron-proton scattering

Povh et al., „Particles & nuclei“

W2c2=P‘2=(P+q)2     P,P‘= incoming and outcoming e- momentu, q= momentum of the exchanged photons

Δ+: M=1232 MeV/c2, Γ=100MeV



Exciting the delta resonance by 
inelastic ep scattering

W<2.5 GeV



Deep inelastic scattering (Hadron
Production)

W>2.5 GeV




