#### Grenzen der Stabilität





<sup>24</sup>O das letzte gebundene O Isotop
<sup>31</sup>F mit einem Proton mehr hat 6 Neutronen mehr

Was passiert an der Dripline?

#### Phänomene an den Grenzen der Stabilität



Was passiert wenn man mehr und mehr Neutronen hinzufügt?

Die Separationsenergie wird immer kleiner.

An der Abbruchkante kostet es keine Energie zwei Neutronen zu entfernen.

Kerne mit negativer Separationsenergie sind ungebunden.

#### Kerne weitab der Stabilität

werden nur mit geringen Raten erzeugt
sind kurzlebig \_\_\_\_\_\_

Brauche möglichst einfache Messung um Information zu gewinnen:

Komplizierte Messungen:

Masse, Spin

magnetisches Moment, Quadrupolmoment

Einfache Messung:

Schieße exotischen Kern auf ein Target und miss den totalen Reaktionsquerschnitt!!

#### Messung des Totalen Wechselwirkungsquerschnitts

- 800 MeV/u <sup>11</sup>B Primärstrahl
- Fragmentation
- Fragmentseparator



$$\sigma_I(p,t) = \pi [R_I(p) + R_I(t)]^2,$$

TABLE I. Interaction cross sections  $(\sigma_I)$  in millibarns.

| Beam             | Be          | Target<br>C | Al            |
|------------------|-------------|-------------|---------------|
| <sup>6</sup> Li  | $651 \pm 6$ | 688 ± 10    | $1010 \pm 11$ |
| <sup>7</sup> Li  | 686 ± 4     | 736 ± 6     | $1071 \pm 7$  |
| <sup>8</sup> Li  | 727 ± 6     | 768 ± 9     | $1147 \pm 14$ |
| <sup>9</sup> Li  | 739 ± 5     | 796 ± 6     | $1135 \pm 7$  |
| <sup>7</sup> Be  | 682 ± 6     | 738 ± 9     | $1050 \pm 17$ |
| <sup>9</sup> Be  | $755 \pm 6$ | 806 ± 9     | $1174 \pm 11$ |
| <sup>10</sup> Be | 755 ± 7     | 813 ± 10    | 1153 ± 16     |



### Stark erhöhter Radius von <sup>11</sup>Li

| Beam             | Be          | Target<br>C   | Al            |
|------------------|-------------|---------------|---------------|
| <sup>6</sup> Li  | 651 ± 6     | 688 ± 10      | $1010 \pm 11$ |
| <sup>7</sup> Li  | 686 ± 4     | 736 ± 6       | $1071 \pm 7$  |
| <sup>8</sup> Li  | $727 \pm 6$ | 768 ± 9       | $1147 \pm 14$ |
| <sup>9</sup> Li  | 739 ± 5     | 796 ± 6       | $1135 \pm 7$  |
| <sup>11</sup> Li |             | $1040 \pm 60$ |               |
| <sup>7</sup> Be  | 682 ± 6     | $738 \pm 9$   | $1050 \pm 17$ |
| <sup>9</sup> Be  | 755 ± 6     | 806 ± 9       | $1174 \pm 11$ |
| <sup>10</sup> Be | 755 ± 7     | $813 \pm 10$  | $1153 \pm 16$ |



TABLE I. Interaction cross sections  $(\sigma_I)$  in millibarns.

Grund für größeren Radius? Deformation ausgedehnte Wellenfunktion

→ Messung von magnetischem Moment und Quadrupolmoment

### Beispiel <sup>11</sup>Li an der Neutronen-Dripline



#### Light drip line nuclei

11Li ist das schwerste gebundene Li Isotop
10Li nicht gebunden
S<sub>2n</sub>(11Li) = 295 (35) keV
Nur der Grundzustand gebunden.

→ ausgedehnte Wellenfunktion?
→ Deformation ?

→ erhöhter Wirkungsquerschnitt für Reaktionen



 $\sigma = \pi (R + \Delta)^2$ 

Brauchen mehr Informationen über Grundzustandseigenschaften!!

#### Messung von Magnetischen Momenten – NMR 1

- Untersuchte Kerne im Festkörper oder in einer Flüssigkeit
- Resonanz wird durch Absorption der RF Strahlungsleistung gemessen



#### Magnetisches Dipolmoment – Zeemann Effekt

- Zustand mit j: 2j+1 magnetische Unterzustände
- Energie eines magnetischen Momentes im B- Feld:

$$E = g_j B \mu_N m_j$$

Aufhebung der Entartung der magnetischen Unterzustände

$$\Delta E = g_j B \mu_N \qquad \text{m} +2 \\ +1 \\ J=2 \qquad 0 \\ -1 \\ -2 \qquad 0$$

Bei Einstrahlung von RF-Strahlung können Übergänge induziert werden.

Bedingung:

$$\hbar\omega_{RF} = n \cdot \Delta E$$

### Hyperfeinwechselwirkung – magnetische HF-WW

#### • Verwende totalen Drehimpuls



• Magnetische Hyperfeinwechselwirkung:

$$E_M = -\vec{\mu}_I \bullet \vec{B}_e$$

$$E_M = \frac{A}{\hbar^2} \vec{I} \bullet \vec{J}$$

$$\vec{I} \bullet \vec{J} = \frac{\hbar^2}{2} [F(F+1) - J(J+1) - I(I+1)]$$

Enthält magnetische Kern- und Elektroneneigenschaften

$$E_{M} = \frac{A}{2} \left[ F(F+1) - J(J+1) - I(I+1) \right]$$

### Hyperfeinwechselwirkung – Quadrupol-HF-WW

• Wechselwirkung eines externen Potentials (Hüllenelektronen) mit einer Ladungsverteilung (Kern)

$$E_{EM} = \int \rho(\vec{r}) \cdot \Phi(\vec{r}) dV$$

Taylorentwicklung des Potentials:

$$E_{EM} = \underbrace{\Phi(\vec{r})_{0} \cdot eq}_{Monopol} + \underbrace{\sum_{i=1}^{3} \left(\frac{\partial \Phi}{\partial x_{i}}\right)_{0} \cdot ep_{i}}_{Dipol} + \underbrace{\frac{1}{2} \sum_{i,j=1}^{3} \left(\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}\right)_{0} eQ'_{ij}}_{Quadrupol}$$

$$\left\langle \mathbf{E}_{\mathbf{Q}} \right\rangle = e \mathbf{Q}_{\mathrm{lab}} \left( \frac{\partial^2 \Phi}{\partial z^2} \right)_0 \left( \frac{3 \left\langle \hat{I} \bullet \hat{J} \right\rangle^2 \hbar^{-4} + \frac{3}{2} \left\langle \hat{I} \bullet \hat{J} \right\rangle \hbar^{-2} - I (I+1) J (J+1)}{2I (2I-1) J (2J-1)} \right)$$

### Hyperfeinwechselwirkung - Zusammenfassung

• Energieaufspaltung zwischen Hyperfeinzuständen ist gegeben durch:

$$\Delta E_{HF} = A \cdot \frac{C}{2} + B \cdot \frac{\frac{3}{2}C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$
Kernspin
$$C = [F(F+1) - J(J+1) - I(I+1)]$$

Physikalische Information über den Kern steckt in A und B

$$A = \frac{\mu_N g_I B_J(0)}{\int J}$$

$$B = eQ_{lab} \left(\frac{\partial^2 V}{\partial z^2}\right)_0 = eQ_{lab} \left(\frac{\partial \mathcal{E}}{\partial z}\right)_0$$
g-Faktor
Quadrupolmoment, Radius



#### Beta NMR - 1



#### Beta NMR - 2

•



### Beta NMR - 3

Messung der Asymmetrie als Funktion von RF Frequenz Laserfrequenz







# Intensitätsverteilung der Elektronen

#### Messung der Assymmetrie

$$A = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}.$$

### Magnetisches Moment und Spin von <sup>11</sup>Li



$$J({}^{11}\text{Li})_{g.s.} = 3/2$$
$$\mu({}^{11}\text{Li}) = 3,6673(25)\mu_N$$
$$\mu_{sp}(\pi p_{3/2}) = 3,79\,\mu_N$$

<sup>11</sup>Li besteht im Grundzustand aus gepaarten Neutronen und einem  $p_{3/2}$  Proton

### Quadrupolmoment von <sup>9</sup>Li und <sup>11</sup>Li



#### Hyperfeinwechselwirkung

$$E_{Q} = \frac{1}{4} h v_{Q} \left( 3\cos^{2} \theta - 1 \right) \left[ m_{I}^{2} - \frac{1}{3} I \left( I + 1 \right) \right]$$

#### Resonanzfrequenz

$$v_{Q} = \frac{3eQ}{2hI(2I-1)} \left(\frac{d\phi}{dz}\right)$$

Vergleich von ∆<sub>Q</sub> in <sup>9</sup>Li und <sup>11</sup>Li

$$\frac{\Delta_{\mathcal{Q}}^{\left(11}Li\right)}{\Delta_{\mathcal{Q}}^{\left(9}Li\right)} = \frac{Q^{\left(11}Li\right)}{Q^{\left(9}Li\right)} = 1,14(16)$$

 $Q^{(11}Li) = 31,2(45)mb$ 

Sphärisch und großer Radius nicht wegen Deformation

### Was kann man an der Neutronen-Dripline erwarten?



# Größenordnungen

## $A = 10 \rightarrow \mu = 1, 1m_N$

$$\kappa^{2} = \frac{2\mu E}{\hbar^{2}} = \frac{2 \cdot 1.1 \cdot 931.5 \frac{MeV}{c^{2}} \cdot E(MeV)}{\left(197 \frac{MeV fm}{c}\right)^{2}} \approx \frac{2 \cdot 10^{3}}{4 \cdot 10^{4}} \frac{E(MeV)}{MeV} fm^{-2}$$

| E       | ۴ <sup>۷</sup>         | К                     | 1/κ ≈ Γ |
|---------|------------------------|-----------------------|---------|
| 7 MeV   | 0,35 fm <sup>-2</sup>  | 0,6 fm <sup>-1</sup>  | 1,7 fm  |
| 1 MeV   | 0,05 fm <sup>-2</sup>  | 0,2 fm⁻¹              | 4,5 fm  |
| 0,1 MeV | 0,005 fm <sup>-2</sup> | 0,07 fm <sup>-1</sup> | 14 fm   |

0

#### Einfluss des Bahndrehimpulses



Zentrifugalbarriere lokalisiert die Wellenfunktion für großen Bahndrehimpuls!

#### Weiterer Test – Reaktionen mit Ladungsänderung

- Der Total Reaktionsquerschnitt steigt für große Neutronenzahl an.
- Der Wirkungsquerschnitt für Reaktionen mit Ladungsänderung bleibt konstant.
- → Ladungsdichteverteilung ändert sich von <sup>8</sup>Li bis <sup>11</sup>Li nicht wesentlich

→ Neutronen sind für Erhöhung des Wirkungsquerschnitts verantwortlich.



#### <sup>11</sup>Be ist auch in der Nähe der Dripline





Erklärung für s<sub>1/2</sub> Grundzustand ?

#### **Deformation?**

Nicht konsistent mit Nilsson Model!!

Ausgedehnte Wellenfunktion??

#### Abschätzungen für <sup>11</sup>Be



Eine Einfache Abschätzung lässt erwarten, dass in beiden J=1/2 Zuständen die Wellenfunktionen stark ausgedehnt sind.

Zum Vergleich:

 $R(^{10}Be) \approx 2.4 \text{ fm}$ 

 $R(A=11) = 1,2 \cdot A^{1/3} = 2,7$  fm

#### Test der ausgedehnten Wellenfunktion

Was bedeutet es, wenn die Wellenfunktion im Orts-Raum ausgedehnt ist?

Wellenfunktion im Impulsraum:

$$\widetilde{\Psi}(\underline{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int d^3 p \Psi(\underline{r}) e^{-i\underline{p}\cdot\underline{r}/\hbar}$$

#### **Fourier Transformation**

Erinnerung:

Formfaktor und Ladungsverteilung

#### **Formfaktor:**

$$F(\vec{q}) = \frac{1}{Ze} \int \rho(\vec{r}') e^{i\vec{q}\cdot\vec{r}'} d\tau'$$



#### Impulsverteilung

Bezug zu unserem Problem:

- Impulsverteilung der stark gebundenen Teilchen breit
- Impulsverteilung der schwach gebundenen Teilchen schmal

Messung der Impulsverteilung des schwach gebundenen Neutrons:

Was muss getan werden:

- <sup>11</sup>Be wird erzeugt durch Fragmentation
- Reaktion an verschiedenen Targets
- Messung der Impuls der Reaktionsprodukte
- Identifikation der Reaktionen, in denen das letzte Neutron abgestreift wurde

#### Gemessene Impulsverteilung des letzten Neutrons in <sup>11</sup>Be



Transverse momentum (MeV/c)

#### Wellenfunktion des letzten Neutrons in <sup>11</sup>Be



 $1/\kappa = 10 \text{ fm}$ 

# <sup>11</sup>Be ist ein Ein-Neutronen Halo !!

 $1/\kappa$  = 6,3 fm

### Impulsverteilung in <sup>11</sup>Li



Gezeigte Messungen in <sup>11</sup>Be und <sup>11</sup>Li sind beide an Kohlenstofftargets durchgeführt worden!

#### Frage:

Könnte es sein, dass man die Breite aufgrund des gewählten Targets so schmal ist?

### Breite der Impulsverteilung für verschiedene Targets

Breite der Impulsverteilung in Abhängigkeit des Targetkerns



Effekt ist im wesentlichen unabhängig vom Target und von der Energie!

### Die Struktur von <sup>11</sup>Li



Beim Aufbruch von <sup>11</sup>Li wird nicht nur ein Neutron herausgeschlagen sondern zwei Neutronen.

#### Die Gründe:

- <sup>10</sup>Li ist nicht gebunden
- Paarungskraft führt zu Korrelationen der beiden Neutronen

#### Interpretation:

Man kann <sup>11</sup>Li sehr vereinfacht beschreiben als einen <sup>9</sup>Li Core plus einem Di-Neutron

Man kann wieder die Argumente der ausgedehnten Wellenfunktion mit exponentiellem Abfall verwenden:

$$\Psi(r) \propto \frac{e^{-\kappa r}}{r}$$

$$\kappa^2 = \frac{2\mu_{2n}S_{2n}}{\hbar^2}$$



#### Anderer Zwei-Neutronen Halo Kern: <sup>6</sup>He



Experimentelle Impulsverteilung lässt sich nur durch ein Hybrid-Modell aus Schalenmodell und Di-Neutron Cluster beschreiben.

Exakte Rechnungen müssen dem Rechnung tragen.

#### **Drei-Teilchen Korrelationen**

Das Bild <sup>11</sup>Li =  ${}^{9}$ Li + Di-Neutron ist zu einfach.

Benötige vollständige qunatenmechanische Beschreibung unter Berücksichtigung von Drei-Teilchen Korrelationen.





An

Existenz von 2- und 3-Teilchen Systemen als Funktion der zwei Wechselwirkungsstärken  $V_{nn}$  und  $V_{An}$ 



### Exp. Aufbau zur Messung der Korrelationen



#### **ALADIN Magnet plus Detektoren**







#### Neutronendetektor LAND (Large Area Neutron Detector)



### Aufbruch von Halos in den gleichen Endzustand



Die Impulsverteilungen sind fast gleich:

 $\rightarrow^{10}$ Li hat einen fast gebundenen Grundzustand mit L=0

 $\rightarrow$  Grundzustand von <sup>11</sup>Li hat etwa gleich große Komponenten v(1s<sub>1/2</sub>)<sup>2</sup> und v(0p<sub>1/2</sub>)<sup>2</sup>

### Korrelationen der Neutronen beim Aufbruch von <sup>11</sup>Li



#### Zwei-Neutronen Halos – Borromeo System



#### Impulsverteilung des Protons in <sup>8</sup>B



Theoretische Dichteverteilung, die auch exp. Impulsverteilung gut reproduziert



E(3/2) = 130 keV

#### Schmale Impulsverteilung lässt sich als Protonen-Halo interpretieren

Aber: Disput darüber ob Wellenfunktion tatsächlich sehr ausgedehnt ist.

#### Einigung steht noch aus.

## Übersicht über die Halo Kerne



Schmale Impulsverteilungen an der Neutronen-Dripline

# **Longitudinal Momentum Distributions**



N = 15

### Radien der leichten Kernen



#### Radien der leichten Kernen



### Diffusität und Bindungsenergie

#### Experimentelle Ladungsverteilungen



#### Ladungsdichte





Diffusität der Kernoberfläche etwa konstant.

Verständlich mit Bild des exponentiellen Abfalls:

Bindungsenergie ~ 7-8 MeV

 $\rightarrow 1/\kappa \approx 1,7 \text{ fm}$ 

Für Kerne mit ähnlicher Separationsenergie erwartet man ähnlichen Abfall der Wellenfunktion!!