N = Z - Kerne

In N=Z Kernen besetzen Protonen und Neutronen die gleichen Orbitale (A<100) ⇒ Großer Überlapp der WF von Protonen und Neutronen

⇒ Wechselwirkung zwischen Protonen und Neutronen lässt sich gut untersuchen

<u>Isospin</u>

- n-p-(Paar)Wechselwirkung (T=0,1)
- Spiegelkerne (⁵⁰Cr-⁵⁰Fe)
- γ-Spektroskopie von Kernen mit A=80-90
- "cross-conjugated" Kerne (44Ti-52Fe)
- Quasideuteron-Konfiguration in ⁵⁰Mn
- Isospin-Mischung in ⁶⁴Ge

<u>β-Zerfall</u>

Gegend um ¹⁰⁰Sn

Übererlaubte Fermi-Zerfälle und die Unitarität der CKM-Matrix

Isospin 1

Wechselwirkung zwischen Nukleonen

- Kernkraft ist <u>ladungsunabhängig</u>
- Coulombkraft ist ladungsabhängig

Proton und Neutron sind Zustände eines Nukleons, die sich in der Projektion T_z eines Vektors Isospin T unterscheiden (analog zu Spin S und Projektion S_z)

T = 1/2; $T_z(n) = +1/2$ T = 1/2; $T_z(p) = -1/2$

Für einen Kern A(N,Z) sind T und T_z die Summe über alle A Nukleonen

$$T = \sum_{A} T_{i}$$
$$T_{z} = \sum_{A} T_{z,i} = \frac{1}{2}(N - Z)$$

Vektorielle Summe

Skalare Summe

Isospin 2

 $T^{2}|T,T_{z}\rangle = T(T+1)|T,T_{z}\rangle$ Erwartungswert

Eigenzustände von *H* haben guten Isospin , wenn gilt:

$$\left[H,T^2\right]=0$$

Leiteroperatoren:

$$T^{+} = T_1 + iT_2$$
 $T^{-} = T_1 - iT_2$

$$T^{+} | p \rangle = | n \rangle \qquad T^{+} | n \rangle = 0$$
$$T^{-} | p \rangle = 0 \qquad T^{-} | n \rangle = | p \rangle$$

Isospin 3 – Zwei-Nukleon-System

Isospin

$$\Phi_{Isospin}(T=1, T_z=0) = \frac{1}{\sqrt{2}} (\phi_p \phi_n + \phi_n \phi_p) \quad symmetrisch$$

$$\Phi_{Isospin}(T=0, T_z=0) = \frac{1}{\sqrt{2}} (\phi_p \phi_n - \phi_n \phi_p) \quad antisymmetrisch$$

Isospin 4 – Kerne mit A=12

Zustände mit gleichem T in verschiedenen Kernen, die gleiche Konfigurationen von Nukleonen repräsentieren:

Analogzustände

Analogzustände liegen wegen Ladungsunabhängigkeit der Kernkraft bei der gleichen Anregungsenergie (abzüglich der Coulombwechselwirkung)

In einem Kern mit T_z können Zustände verschiedenen Isospins T sein, die unterschiedliche Nukleonenkonfigurationen repräsentieren:

Weizsäckersche Massenformel

Semi-empirische Parametrisierung der Bindungsenergie

$$B(Z, N) = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + 0 + 0 -\delta$$

$$\delta = a_p A^{-1/2}$$

Massenmessungen an SPEG@GANIL

Bindungsenergien von Kernen mit N \approx Z

Empirische n-p-Wechselwirkung

Wechselwirkung zwischen letztem Proton und letztem Neutron:

Wigner-Energie

 $B_{np}^{pair} = \varepsilon_{np}(A)\pi_{np} - E_{W} \qquad \varepsilon_{np} : \text{ nichtkorrelierte RestWW zwischen n und p}$ $E_{W} = W(A)|N-Z| + d(A)\delta_{NZ}\pi_{np} \qquad \pi_{np} = \begin{cases} 1 \text{ für uu - Kerne} \\ 0 & \text{ sonst} \end{cases}$

W(A) und d(A) werden aus Bindungsenergiedifferenzen bestimmt:

$$W(A) \approx d_{T=0}(A)$$

Interpretation:

Beide Terme haben den gleichen mikroskopischen Ursprung, also den T=0 Anteil der PaarWW

T=0 und T=1 n-p-(Paar)Wechselwirkung

Das Kräfteverhältnis zwischen T=0 und T=1 Anteilen in der np-Wechselwirkung hängt von A ab:

uu-Kerne mit N=Z

Für Kerne A<40 gilt: g.s. hat T=0

Für Kerne A>40 gilt: g.s. hat T=1

HFB-Rechnungen

T=0 n-p-Paarwechselwirkung???

... keine T=0 n-p-Paarwechselwirkung erkennbar!!!!

Coriolis Alignment

Die intrinsische Konfiguration mit zwei ungepaarten Nukleonen wird ein höheres Trägheitsmoment haben als die Grundzustandskonfiguration.

(Die beiden Nukleonen bewegen sich in der Ebene senkrecht zur Rotationsachse und erhöhen dadurch das Trägheitsmoment.)

Man kann das Alignment der Nukleonendrehimpulse eines Intruderpaars als eine vermiedene Kreuzung zweier Rotationsbanden betrachten.

Spiegelkerne und Isospinsymmetrie

... wird ein Paar von Protonen oder Neutronen ausgerichtet?????

Analoge Rotationsbanden

Spiegelkerne - ⁵⁰Cr-⁵⁰Fe

Einziger Unterschied: Protonen stoßen sich ab, Neutronen nicht

Schwächste Coulombabstossung bei ausgericheteten Protonen, da geringster Überlapp der WF

$$CED = E^{*}({}^{50}Fe) - E^{*}({}^{50}Cr)$$

Zwei Nukleonen im f7/2-Orbital lassen sich maximal zu J=6 koppeln

$$\Delta A(^{50}Cr) = \left\langle J = 6, T = 1 \right\rangle_{pp} - \left\langle J = 6, T = 1 \right\rangle_{nn}$$

⁵⁰Cr:

Ausrichtung eines f7/2-Protonpaares und danach eines f7/2-Neutronpaares

... und umgekehrt bei 50Fe

Verzögertes Alignment bei N=Z Kernen

nn-, pp- oder np-Paare reagieren unterschiedlich auf Coriolis-Kraft

Verstärkte np-Wechselwirkung könnte für verzögertes Alignment verantwortlich sein

Theorie: keine np-Paare + "normale" np-WW ____ oder

+ verstärkte np-WW – – – – –

... oder doch np-Paare????

⁸⁸Ru ist der schwerste N=Z-Kern für den bisher γ–Spektroskopie gemacht werden konnte!!!!!

"Cross conjugated" Kerne

N=Z=20 ist guter Schalenabschluß, N=Z=28 hingegen nicht!!!

In N=Z Kernen besetzen Protonen und Neutronen die gleichen Orbitale (A<100) ⇒ Großer Überlapp der WF von Protonen und Neutronen

⇒ Wechselwirkung zwischen Protonen und Neutronen lässt sich gut untersuchen

<u>Isospin</u>

- n-p-(Paar)Wechselwirkung (T=0,1)
- Spiegelkerne (⁵⁰Cr-⁵⁰Fe)
- γ-Spektroskopie von Kernen mit A=80-90
- "cross-conjugated" Kerne (44Ti-52Fe)
- Quasideuteron-Konfiguration in ⁵⁰Mn
- Isospin-Mischung in ⁶⁴Ge

<u>β-Zerfall</u>

Gegend um ¹⁰⁰Sn

Übererlaubte Fermi-Zerfälle und die Unitarität der CKM-Matrix

Quasideuteron-Konfiguration 1

In uu-Kernen mit N=Z sind Zustände mit T=0 und T=1 bei ähnlichen Energien
Experimentell werden teilweise starke M1-Übergänge mit ∆J=1 und ∆T=1 beobachtet

Interpretation der Zustände als Quasideuteron-Konfiguration gekoppelt zum Rest(gg)-Kern

QD: ein Proton und ein Neutron im gleichen j-Orbital koppeln zu J=0...2j und T=0 oder 1

Quasideuteron-Konfiguration 2

Analytische Formeln im QDC-Bild:

j=l+ $\frac{1}{2}$: konstruktive Überlagerung von Spinund Bahnanteilen in der Übergangsstärke \Rightarrow große B(M1)-Werte

$$B(M1;0^+ \to 1^+) = \frac{3}{4\pi} \frac{j+1}{j} [l+4.706]^2 \mu_N^2$$

j=l- $\frac{1}{2}$: destruktive Überlagerung von Spinund Bahnanteilen in der Übergangsstärke \Rightarrow kleine B(M1)-Werte

$$B(M1;0^+ \to 1^+) = \frac{3}{4\pi} \frac{j}{j+1} [l-3.706]^2 \mu_N^2$$

- B(M1) verhalten sich wie es für ein Deuteron zu erwarten wäre
- Im Falle von Konfigurationsmischung ergeben sich kleinere B(M1)-Werte als f
 ür reine QDC-Zust
 ände

⁵⁰Mn - Lebensdauermessung

⁵⁰Mn – Interpretation im QDC-Modell

$$\tau = 0.84^{+1.6}_{-1.2} \text{ ps} \implies B(M1; 3^+_{T=0} \rightarrow 2^+_{T=1}) = 2.9^{+1.0}_{-0.7} \mu^2_N \quad Theo(QD \ Rotor) = 3.1 \mu^2_N$$

QDC-Modell:

$$B(M1; J+1 \to J)$$

= $\frac{3(J+1)(2j+2+J)(2j-J)}{4j(j+1)(2J+3)}B(M1; 1^+ \to 0^+)$

$$B(E\lambda / M\lambda; J_2 \to J_1)$$

= $\frac{2J_1 + 1}{2J_2 + 1} B(E\lambda / M\lambda; J_1 \to J_2)$

Unter der Annahme, daß QDC-Modell gilt:

 $B(M1; 0^+_{T=1} \rightarrow 1^+_{T=0}) = 7.8^{+2.6}_{-1.9} \mu_N^2$

Isospin-Auswahlregeln für elektromagn. Übergänge

(1) Nur Übergänge erlaubt mit $\Delta T = 0, \pm 1$ und $\Delta T_z = 0$

- (2) In "konjugierten" Kernen (gleiches A, entgegengesetztes T_z) haben sich entsprechende Übergänge mit $\Delta T = \pm 1$ identische Eigenschaften
- (3) In "konjugierten" Kernen haben sich entsprechende E1-Übergänge identische Eigenschaften
- (4) In "selbst-konjugierten" Kernen ($T_z = 0$) sind E1-Übergänge mit $\Delta T = 0$ verboten

Isospin-Mischung in ⁶⁴Ge?

EUROBALL

⁶⁴Ge - Population

Detektor für geladene Teilchen

⁶⁴Ge - Teilchen-γ-Gates

Gammastrahlung - Winkelverteilung

$$W(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta)$$

Multipolmischungsverhältnis δ

$$\delta_{\lambda\lambda'} = \frac{\left\langle J_i \| T(\lambda) \| J_f \right\rangle / \sqrt{2\lambda + 1}}{\left\langle J_i \| T(\lambda') \| J_f \right\rangle / \sqrt{2\lambda' + 1}}$$

$$A_{K} = B_{K}(J_{i}, w(M_{i})) G_{K}(\tau_{i}, \nu, q, ...) R_{K}(J_{i}, J_{f}, \lambda, \lambda', \delta_{\lambda\lambda'}) Q_{K}$$

- B_κ: <u>Orientierung</u> Besetzung der magnet. Unterzustände M_i
- G_K: <u>Deorientierung</u> Zerstörung der Orientierung durch HyperfeinWW des Kernspins mit den Elektronen der (hochangeregten) Hülle
- **R_K: Drehimpulskopplung (Kernspins und Multipolfeld)**
- Q_K: Verschmierung durch <u>endlichen Öffnungswinkel</u> des Detektors

Gammastrahlung – Linearpolarisation

Klein-Nishina-Formel

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{r_e^2}{2} \left(\frac{E_{\gamma'}}{E_{\gamma}}\right)^2 \left[\frac{E_{\gamma'}}{E_{\gamma}} + \frac{E_{\gamma}}{E_{\gamma'}} - 2\sin^2\vartheta\cos^2\gamma\right]$$

Compton Streuung bevorzugt Streuung in Ebene senkrecht zum <u>E</u>-Vektor!

Magnetische Strahlung (<u>E</u> \perp zur Emissionsebene; N_{||} > N_{\perp})

$$\Rightarrow A(\theta) = \frac{N_{\perp} - N_{\parallel}}{N_{\perp} + N_{\parallel}} < 0$$

CLOVER Detektor

Elektrische Strahlung (<u>E</u> || zur Emissionsebene; $N_{||} < N_{\perp}$) =

$$A(\theta) = \frac{N_{\perp} - N_{\parallel}}{N_{\perp} + N_{\parallel}} > 0$$

⁶⁴Ge – Spins und Multipolaritäten

⁶⁴Ge - Lebensdauern

Isospin-Mischung durch Coulombwechselwirkung

Coulombwechselwirkung ist ladungsabhängig und kann daher Zustände mit verschiedenem Isospin T mischen:

$$|64, J, T, T_z = 0\rangle = |(66, J, T = 1) \otimes (h^2, J = 0, T = 1)|J, T, T_z = 0\rangle$$

Kein guter Isospin (T=0,1,2) in ⁶⁴Ge!!!

⁶⁴Ge - Isospin-Mischung!

$$B(E1, {}^{64}Ge) = \frac{8}{3}\alpha^2 B(E1, {}^{66}Ge)$$
$$\Rightarrow \alpha^2 = 2.5\%$$

β-Zerfall 1

$$n \rightarrow p + e^- + \overline{\nu} \qquad p \rightarrow n + e^+ + \nu$$

$$g_A/g_V = -1.25$$

Übergangswahrscheinlichkeit

$$N(p) dp = \frac{2\pi}{\hbar} \left| \left\langle f \left| H_{\beta} \right| i \right\rangle \right|^{2} \frac{dn}{dE_{0}}$$

Fermis Goldene Regel

β-Zerfall 2

$$H_{fi} = \left\langle \Phi_f \varphi(e) \varphi(v) \middle| H_F + H_{GT} \middle| \Phi_i \right\rangle$$

Matrixelement

Ansatz: ebene Welle

$$\varphi(e) = e^{-ikr} = 1 + ikr + \dots \approx 1$$
$$\ell = 0 \qquad 1 \qquad .$$

 $k = 10^{-2} \text{ fm}^{-1} \qquad (e \text{ mit } 2 \text{ MeV})$ $r \approx 1 - 10 \text{ fm} \qquad (\text{Kernradius})$

Bahndrehimpuls des e

$$\begin{aligned} \left| H_{fi} \right|^2 &= g_V^2 \left| \left\langle \Phi_f \left| T^- \left| \Phi_i \right\rangle \right|^2 + g_A^2 \right| \left\langle \Phi_f \left| \sigma T^- \left| \Phi_i \right\rangle \right|^2 \right. \\ &= g_V^2 M_F^2 + g_V^2 M_{GT}^2 \end{aligned}$$

$$N(\varepsilon)d\varepsilon = \frac{g_V^2 M_F^2 + g_V^2 M_{GT}^2}{B} \varepsilon \sqrt{\varepsilon^2 - 1} (\varepsilon_0 - \varepsilon)^2 F(Z,\varepsilon) d\varepsilon$$
$$\varepsilon = E/m_0 c^2 \qquad \eta = p/m_0 c \qquad B = \frac{2\pi^3 \hbar^7}{m_0^5 c^4}$$

β-Zerfall 3

Übergangsstärke

Falls kein Übergang mit I=0 möglich ist, kann das Elektron auch mit I>0 emittiert werden, was zu kleineren Übergangsstärken führt \Rightarrow "verbotene" Übergänge

¹⁰⁰Sn

Für Kerne um ^{100}Sn mit $Z \leq 50$ und $N \geq 50$:

 $\pi g_{9/2} \rightarrow v g_{7/2}$ Gamow-Teller-Übergang

¹⁰⁰Sn – Experiment @ GSI

¹⁰⁰Sn – FRS@GSI

¹⁰⁰Sn - Identifikation der Fragmente

¹⁰⁰Sn - Implantationsdetektor

¹⁰²Sn-Zerfall – γ-Spektroskopie

¹⁰²Sn-Zerfall – β-Spektroskopie

Diskrete 151 keV-Linie im β-Spektrum ???

 β^+ -Zerfall \Leftrightarrow Elektroneneinfang (EC)

 $p \rightarrow n + e^+ + v \quad \Leftrightarrow \quad p + e^- \rightarrow n + v$

Röntgenquanten werden in Si-Detektor detektiert und addieren sich zu e⁻-Energien!!!!

Konversions – $e^{-}(M1)$	53 <i>keV</i>
Konversions – $e^{-}(M1)$	69 keV
K – Röntgen aus In (EC)	28 keV
	151 <i>keV</i>

Konversionselektronen

Halbwertszeiten

Übererlaubte Fermi-Übergänge: - großer Überlapp der WF

- $0 \rightarrow 0$
- ∆T=0

 \Rightarrow uu N=Z-Kerne um ¹⁰⁰Sn

Kern	T _z	T _{1/2}	
⁷⁸ Y	0(T=1)	55^{+9}_{-6} ms	
⁸² Nb	0(T=1)	48^{+8}_{-6} ms	
$^{86}\mathrm{Tc}$	0(T=1)	$59^{+8}_{-7} { m ms}$	Fe
$^{90}\mathrm{Rh}$	0(T=1)	12^{+9}_{-4} ms	ZW
⁹⁴ Ag	0(T=1)	$26^{+26}_{-9} \mathrm{ms}$	A
⁹⁸ In	0(T=1)	32^{+32}_{-11} ms	
⁷⁸ Y	0(T=0)	$5.7^{+0.7}_{-0.6}$ s	
⁹⁰ Rh	0(T=0)	$1.0^{+0.3}_{-0.2}$ s	
⁹⁴ Ag	0(T=0)	$0.45^{+0.20}_{-0.13}$ s	
⁹⁸ In	0(T=0)	$1.2^{+1.2}_{-0.4}$ s	

Übererlaubte Fermi-Übergänge zwischen isobaren Analogzuständen

β-Zerfall aus anderer Perspektive

$$n \rightarrow p + e^- + \overline{\nu}$$

β-Zerfall erlaubt Blick ins Innere der Nukleonen!!!!!

CKM-Matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
Starke und elements of the second starting of the second start of the sec

Starke und elektromagnetische Wechselwirkung erhalten Flavour, schwache Wechselwirkung dagegen nicht:

Cabbibo-Kobayashi-Maskawa-Matrix verbindet Masseneigenzustände der Quarks (u,s,b) mit Quark-Eigenzuständen der schwachen Wechselwirkung (u',s',b')

β-Zerfall

 $\begin{pmatrix} 0.9741 - 0.9756 & 0.219 - 0.226 & 0.0025 - 0.0048 \\ 0.219 - 0.226 & 0.9732 - 0.9748 & 0.038 - 0.044 \\ 0.004 - 0.014 & 0.037 - 0.044 & 0.9990 - 0.9993 \end{pmatrix}$

Experimentelle Werte (Particle Physics Booklet 2002)

Übererlaubte Fermi-Zerfälle

	(keV)	(ms)	(%)	(%)	(s)	(s)
¹⁰ C	1907.77(9)	19290(12)	1.4645(19)	0.296	3038.7(45)	3072.9(48)
¹⁴ O	2830.51(22)	70603(18)	99.336(10)	0.087	3038.1(18)	3069.7(26)
²⁶ mAl	4232.42(35)	6344.9(19)	≥ 99.97	0.083	3035.8(17)	3070.0(21)
³⁴ Cl	5491.71(22)	1525.76(88)	≥ 99.988	0.078	3048.4(19)	3070.1(24)
38m K	6044.34(12)	923.95(64)	> 99.998	0.082	3049.5(21)	3071.1(27)
^{42}Sc	6425.58(28)	680.72(26)	99.9941(14)	0.095	3045.1(14)	-3077.3(23)
⁴⁶ V	7050.63(69)	422.51(11)	99.9848(13)	0.096	3044.6(18)	3074.4(27)
⁵⁰ Mn	7632.39(28)	283.25(14)	99.942(3)	0.100	3043.7(16)	3073.8(27)
54 Co	8242.56(28)	193.270(63)	99.9955(6)	0.104	3045.8(11)	3072.2(27)
				Ave	erage, $\overline{\mathcal{F}t}$	3072.3(9)
					χ^2/ν	1.10

$$ft(1+\delta_R)(1+\delta_C)$$
$$\equiv F \ t = \frac{B \ \ln(2)}{2g_V^2(1+\Delta_R^V)}$$

$\overline{F} t = 3072.3 \pm 0.9 \pm 1.1$

$$g_F$$
 aus reinleptonischen Zerfall: $\mu^- \rightarrow e^- + v_e + v_\mu$

$$\Rightarrow |V_{ud}| = 0.9740 \pm 0.0005 \implies \sum_{i} V_{ui}^2 = 0.9968 \pm 0.0014$$

 $\sum_{i} V_{ui}^{2} < 1$ Unitarität ist verletzt!!!!

Unitarität der CKM-Matrix

<u>1) Übererlaubte β -Zerfälle (0 \rightarrow 0)</u>

$$\sum_{i} V_{ui}^2 = 0.9968 \pm 0.0014$$

Vorteil: reiner g_V Anteil; kleiner exp. Fehler Problem: viele theo. Korrekturen

2) Zerfall des freien Neutrons

Vorteil: keine Kernstruktur-Korrekturen Problem: g_A und g_V Anteile; großer exp. Fehler

 $m_n - m_p = 1.2933318 \pm 0.0000005$ MeV $\tau = 885.7 \pm 0.8$ s

3) Zerfall des π - (0⁻ \rightarrow 0⁻)

 $\pi^- \rightarrow e^- + \overline{\nu_e} + \pi^0$

 $\sum V_{ui}^2 = 0.9833 \pm 0.0311$

Vorteil: reiner g_V Anteil; keine Kernstruktur-Korrekturen Problem: großer exp. Fehler durch kleines BR

 $m_{\pi^{\pm}} - m_{\pi^{0}} = 4.5936 \pm 0.0005 \text{ MeV}$ $\tau = (2.60033 \pm 0.0005) \times 10^{-8} \text{ s}$ $BR = (1.025 \pm 0.034) \times 10^{-8}$