Proton-Dripline

Übersicht Halo Kerne

Was kann man an der Neutronen-Dripline erwarten?

	$\Psi(r) \propto \frac{e^{-\kappa r}}{r}$ Je kleiner die B	$ \kappa^2 = \frac{2\mu}{\hbar} $	uE 2 ausgedehnter die W	ellenfunktion
$A = 10 \rightarrow \mu = 1,$	$1m_N$			
E	κ ²	К	$1/\kappa pprox r$	
7 MeV	0,35 fm ⁻²	0,6 fm ⁻¹	1,7 fm	
1 MeV	0,05 fm ⁻²	0,2 fm ⁻¹	4,5 fm	
0,1 MeV	0,005 fm ⁻²	0,07 fm ⁻¹	14 fm	

Formation von α -Teilchen im Kern vor der Emission

Spontaner α -Zerfall \rightarrow negative Separationsenergie

$$S_C = \sum S_p + \sum S_n - B_C$$

 S_{C} < 0 wegen hoher Bindungsenergie des α

Teilchen	B _c (MeV)	S (MeV)
n		7.15
р		6.05
d	2.2	10.5
t	8.5	10.1
³Не	7.7	9.6
α	28.3	-5.4

Protonenradioaktivität

Lehrbuch: Es gibt drei Formen der Radioaktivität: - α-Zerfall - β-Zerfall - γ-Zerfall

Kerne an der Protonendripline sind instabil gegen Protonenzerfall.

Protonen-Radioaktivität ist die vierte Form der Radioaktivität

Energieverhältnisse beim Protonenzerfall

Einfluss des Bahndrehimpulses

Zentrifugalbarriere

$$V_{Z} = \frac{\ell(\ell+1)\hbar^2}{2\mu r^2}$$

α -Zerfall:

$$\mu_{\alpha} = \frac{(A-2)\cdot 2}{A}$$

Proton-Zerfall

$$\mu_p = \frac{(A-1)\cdot 1}{A}$$

Zentrifugalbarriere ist ca. 2 mal größer als beim α -Zerfall.

Was bestimmt die Halbwerstzeit für Protonemitter?

- Protonenseparationsenergie (= Q-Wert)
- Coulomb Barriere
- Bahndrehimpuls (größere Zentrifugalbarriere für höheren Bahndrehimpuls des Protons)

Halbwertszeiten werden berechnet aus:

- Einteilchenwellenfunktion
- Coulomb-Barriere
- Zentrifugalbarriere
- Tunnelprozess (WKB-Näherung)

Coulomb Barriere und Zentrifugalbarriere führen dazu, dass Protonenungebundene Kerne eine signifikante Halbwertszeit haben können.

Bekannte Protonenemitter

KNOWN PROTON RADIOACTIVITIES

Keine Grundzustandsprotonenemitter unterhalb von Z=50

Unterhalb von Z=50 ist die Coulomb-Barriere so klein, dass die Halbwertszeiten sehr klein werden.

Beispiel: ⁶⁹Br

Aus der Massensystematik extrapoliert man: S_p=-180 keV

Daraus ergibt sich eine partielle Protonhalbwertszeit von: $T_{1/2} = 10^3$ sec (Die partielle Halbwertszeit für β -Zerfall ist kleiner 100 ms)

Das experimentelle Limit liegt jedoch bei $T_{1/2}$ < 24 ns

Daraus ergibt sich eine Separationsenergie von kleiner $S_p < -500 \text{ keV}$

300 keV Energieunterschied resultieren in 11 Größenordnungen Unterschied in T_{1/2} !!

Für Kerne mit Z > 50 ist der Einfluss nicht mehr so dramatisch!!

Experimentelle Methode

Produktion durch Schwerionen-Fusionsreaktion:

Problem: Die Wirkungsquerschnitte für die Reaktionskanäle zur Protonendripline sind sehr klein:

Beispiel:
$${}^{78}Kr + {}^{92}Mo \rightarrow {}^{170}Pt^* @ 357MeV$$

Massenseparatoren

Fragment Mass Analyzer (FMA)

Separation nach Masse und Ladung

FMA

Nachweis des Protonenzerfalls in der Fokalebene

- Es werden ständig Reaktionsprodukte im Fokalebenendetektor implantiert
- Gleichzeitig kommt es sehr selten zu Protonenzerfällen
- Um die Halbwertszeit zu messen, muss man folgendes erreichen:
 - Man muss zwischen Implantation und Zerfall unterscheiden
 - Energie der Rückstoßkerne: 140 MeV
 - Energie der Protonen: ~1 MeV
 - Der gemessene Ort der Implantation und des Zerfalls muss identisch sein
 - Man muss die Zeit zwischen Implantation und Zerfall messen

Aufbau der Fokalebene

FMA Focal Plane Implantation Facility

DOUBLE-SIDED SILICON STRIP DETECTOR

FMA Fokalebene

Separation von Strahl und Fusionsprodukten

DSSD Spektren

Veto: gleiche Energie auf beiden Seiten des Detektors

Verbesserte Nachweiseffizienz durch Siliziumbox

Zerfallsspektrum für ⁷⁸Kr + ⁹²Mo

Schalenstruktur für N=90, Z=77

Frage:

Wie ist die Position und Reihenfolge der Einteilchenorbitale an der Protonendripline

Einteilchenstruktur von ¹⁶⁷Ir

Zerfallsschema von ¹⁶⁷Ir

Untersuchung von Kernstruktur mit Protonenzerfall

Messung der Halbwertszeit Vergleich mit theoretisch berechneter Halbwertszeit Definition eines experimentellen spektroskopischen Faktors:

$$S = \frac{T_{1/2}^{p}(calc)}{T_{1/2}^{p}(\exp)}$$

Mit dem spektroskopischen Faktor kann man die Besetzung der Einteilchen-Wellenfunktion testen.

$$S_{j} = \left| \left\langle \Psi_{i} (Z+1, A+1) \right\rangle \right| a^{j+} \left| \Psi_{f} (Z, A) \right\rangle \right|^{2}$$

Reduktion der spektroskopischen Faktoren

$$S_{j} = \left| \left\langle \Psi_{i} \left(Z + 1, A + 1 \right) \right\rangle \right| a^{j+} \left| \Psi_{f} \left(Z, A \right) \right\rangle \right|^{2}$$

Der Zustand im Mutterkern besitz ein Loch in einem Teilchenorbital, dass im Tochterkern unter Umständen vollständig besetzt sein kann.

Dies kann man mit einem einfachen Modell testen:

- zwischen Z=64 und Z=82 sind $s_{1/2}$, $d_{3/2}$ und $h_{11/2}$ Orbitale aktiv
- Für Z=80 sind bis auf ein Lochpaar alle Unterzustände besetzt.
- Aufgrund der Paarwechselwirkung ist aber auch dieses Orbital substantiell besetzt (Paarstreuung)
- Daher hat das 81sten Proton keinen großen Überlapp mit dem Zustand der aus Z=80 Grundzustand plus ein Proton im Orbital j entsteht.
- Für Z=70 gibt es jedoch viele freie Zustände und man erhält einen großen Überlapp.

Danach sollte der spektroskopische Faktor einfach von der Zahl der freien Paarzustände unterhalb der Z=82 Schale abhängen.

Spektroskopische Faktoren

P=Anzahl der Paare von Protonenlöcher unterhalb von Z=82

Theoretische Beschreibung (Mikroskopische Modelle)

⁵⁸Ni + ⁶⁴Zn @ 300 MeV

Protonenemitter ¹¹⁷La

$$^{117}_{57}La_{60}$$

Protonen Energie: 802 (5) keV

Halbwertszeit: T_{1/2} = 24 (3) ms

Vorhersagen für die Halbwertszeiten

Protonen Energie:802 (5) keVHalbwertszeit: $T_{1/2} = 24$ (3) ms

Sphärisches Schalenmodell:

 $T_{1/2}(\pi g_{7/2}) = 86 \text{ ms} \rightarrow S = 3,6 \text{ (unphysikalisch)}$

 $T_{1/2} (\pi d_{5/2}) = 234 \,\mu s \rightarrow S = 0.01$ (unrealistisch klein)

Dieser Protonenzerfall kann nicht einfach im sphärischen Schalenmodell erklärt werden!

 \rightarrow Deformation

Nilsson Model und Protonenzerfall

β₂(¹¹⁷La) ~ 0,2

Protondripline und Deformation

Spektroskopie angeregter Zustände in Protonemittern

Die angeregten Zustände eines Protonenemitters geben detailliertere Informationen über die Struktur der Dripline Kerne

Recoil Decay Tagging Methode (RDT)

Gammasphere plus FMA 1

Gammasphere plus FMA 2

Gammaspektren für ¹⁴¹Ho

 σ_{tot} ~200 mb

σ =140nb

Spektroskopie auf dem 10-6 Niveau !!

Struktur von ¹⁴¹Ho

 $R_{4/2} = 500/169 = 2.96$

Rotor \rightarrow Deformation

Heutige Grenzen der Untersuchung von Protonemittern

Emitter	Evaporation Channel	Measured Cross-section
177 Tl	p2n	10 nb!
¹⁸⁵ Bi	pn	60 nb
¹³¹ Eu	p4n	90 nb
¹⁶⁵ Ir	p4n	200 nb
¹⁴¹ Ho	p4n	250 nb
¹³⁰ Eu	p5n	~10 nb

Zwei-Protonen Emission

Sequentieller Zerfall mit 2 Protonen möglich Mur simultaner 2 Protonenzerfall möglich

Beispiel: ⁴⁵Fe

⁴⁵Fe Experiment bei GANIL

75 MeV/u ⁵⁸Ni + ${}^{9}\text{Be} \rightarrow {}^{45}\text{Fe}$

Nachweis des 2p Zerfalls von ⁴⁵Fe

75 MeV/u ⁵⁸Ni + ${}^{9}Be \rightarrow {}^{45}Fe$

decay time (ms)

⁴⁵Fe Produktion am FRS der GSI 650 <u>MeV/u ⁵⁸Ni + ⁹Be → 45 Fe</u>

Nachweis des 2p Zerfalls von ⁴⁵Fe

650 MeV/u ⁵⁸Ni + ${}^{9}Be \rightarrow {}^{45}Fe$

