Nukleare Astrophysik

Atomkerne $\leftarrow \rightarrow$ Astrophysik

Beobachtung von Isotopen-Verteilungen Absorptionsspektren γ-Astronomie Extrasolare Radionuklide Solare Isotopenhäufigkeiten Sonnenspektrum Meteoriten Nukleosynthese Urknall Sternbrennen (kein ²He, A=5, ⁸Be !!!) Fusion p+p, p+d, $\alpha + \alpha + \alpha$, \rightarrow ⁵⁶Ni solare Neutrinos Supernovae explosive Nukleosynthese s – Prozess (slow neutron capture) r – Prozess (rapid neutron capture) rp – Prozess (rapid proton capture) p - Prozess (tatsächlich (γ ,n)-Prozesse) Kernreaktionen mit geladenen Teilchen **Coulomb Barriere** Tunnelwahrscheinlichkeit Maxwell-Boltzmann Verteilung Bedeutsamer Energiebereich **Resonanz-Reaktionen** Experimente Direkte Reaktionen Verbesserungen Umkehrreaktionen Transferreaktionen Methode mit dem "Trojanischen Pferd"

Primordiale Nukleosynthese Urknall

Universum ist soweit abgekühlt, dass sich die Nukleonen gebildet haben.

Wegen der unterschiedlichen Masse $\delta m=0.8$ MeV mehr Protonen als Neutronen

$$\frac{H(n)}{H(p)} = \exp(-\delta m / kT) \approx 1/6$$

außerdem $n \to p + e^- + \overline{v}$ $\tau = 900s$

keine Fusion n+n oder p+p möglich !!!

solange T > 0.5 MeV keine Fusion $n + p \rightarrow d + \gamma$ da nur Q = 2.2MeV, wird d wieder zerlegt durch γ

Erst ab kT≈ 0.4 MeV	$n+p \rightarrow d+\gamma$
dann sofort	$d + p \rightarrow {}^{3}He + \gamma d + n \rightarrow {}^{3}H + \gamma$
und	$^{3}\text{He} + n \rightarrow ^{4}\text{He} + \gamma$ $^{3}\text{H} + p \rightarrow ^{4}\text{He} + \gamma$
=> Massenverhältnis:	76% H 24% He <0.1% "Metalle"

Solare Häufigkeiten

Urknall Nukleosynthese

Bindungs-Energie pro Nukleon

Figure 3.16 The binding energy per nucleon.

Proton-Proton Kette

FIG. 6: Excluded regions of neutrino oscillation parameters for the rate analysis and allowed regions for the combined rate and shape analysis from KamLAND at 95% C.L. At the top are the 95% C.L. excluded region from CHOOZ [15] and Palo Verde [16] experiments, respectively. The 95% C.L. allowed region of the 'Large Mixing Angle' (LMA) solution of solar neutrino experiments [13] is also shown. The thick dot indicates the best fit to the KamLAND data in the physical region: $\sin^2 2\theta = 1.0$ and $\Delta m^2 = 6.9 \times 10^{-5} \text{eV}^2$. All regions look identical under $\theta \leftrightarrow (\pi/2 - \theta)$ except for the LMA region.

2		12.74	1.0	CL P		5		- a.s.		12.2-16	1.1.1	14.2-		14.7		10.7		- 14.64		- 4.4								
pp 0.900 1,500	5.30 1,18 s	p+44.5.1.	P 29 4.18	p* 18	SI 28 92,23	e-0,17	AI 27 100	# 0,200	Mg 26 11,01	+ 0,007	Na 25 59,6 s	F 30. 1975, 590. 580, 1642.	Ne 24 3,38 m	5-20 9874	F 23 8	8- 6.5. 3 1701- 2129- 1002- 3401	0.22 2,25 %	0- 7.72: 007; 1000	N 21 95 ms	44	C 20 14 ms	4.6	B 19		;	4		
20.00	S 29 187 ma	17 71304. 10 5.44 2.13	P 28 268 ms	71778: 4487. 71778: 4487. 10:0.688:0.0884. 10:2:408:1.4694	SI 27 4,16 s	C	AI 26 6.85 1 215-	101 014	Mg 25 10,00	# 0.17	Na 24 20m 14.868	調問	Ne 23 37,2 s	5-44. IGBL.	F 22 4,23 s	87 5.5. 5 1275: 2083: 2 106	0.21 3.4.8	5-5.4. -1730, 38/17. 200, 1700	N 20 142 ms	68	C 19 49 ms	Printer over-						
e 33,6	S 28 125 ms	6 ⁴ 10 2.96 1.46 3.70	P 27 260 ms	0" 100.72, 0.61	SI 26 2,21 s	V 3.4	AI 25 7,18 s	P* 3.1	Mg 24 78,99	# 0.053	Na 23 100	or 0.43 + 0.1	Ne 22 9,25	- 0.05	F 21 4,16 s	g= 5.0, 5.7 5.061;1006	0.20	p12.8	N 19 329 ms	Part States	C 18 92 ms	7 7 2014, 100 2009. 2009. 2003.	B 17 6.1 ms	1000 E	Ş	21		
	S 21 ms	535 1585	P 26 20 ms	11 105 4.00 10 7.27, 6.04	SI 25 218 ms	10 4 (00, 0, 30) 1, 200 1, 100	AI 24 (38m) 2.014	Seale of	Mg 23	g* 21	Na 22 2,600 a	91 0.05 1.0 5 1.275 01/0 20000 01/0 200	Ne 21 0.27	o 0,7	F 20 11,0 8	0-54- 9104.	0 19 27,1 8	pr 0.0.47	N 18 0.63 8	P. Nr. 11. 1. 100 000 1000 0001 1. 100 101. 1. 100 101.	C 17 183 ms	in tea. 1 title they 1986.						
·	32,066	ar 0,54	P 30,973762	or 0,16	Si 24 140 ms	8° 1.50, 4.09	AI 23 470 ms	ar 0.03	Mg 22 3,86 s	g* 32.	Na 21 22,48 s	P* 2.6.	Ne 20 90,48	o 0,04	F 19 100	r 0.0095	O 18 0,200	# 3.50016	N 17 4,17 8	Processon International Participation Processon	C 16 0,747 s	F 4.7.7.8.	B 15 10,4 ms	Er (,77) 3,20	Be 14 4,35 ms	ar-0.0.000 100 - 100 - 100 - 200	ç	2
		16		15	Si 23 42,3 ms	No 2,40,230.	AI 22 59 ms	10 1.20, 0.72 10 1.20, 0.72 10 1.20	Mg 21 122,5 ms	1000 1001 1000 1000	Na 20 445 ms	11- 11.2	Ne 19 17,22 s	P ⁴ 2.0. 7(110, 100, 1567)	F 18 109,7 m	pt as rov	O 17 0,038	en. 0.24	N 16 53.01 15	100 100 100 100 100 100 100 100 100 100	C 15 2,45 s	5-4/6 6/8 -	B 14 13,8 ms	5-14.0. 10000: 0130				
					Si 22 29 ms	5 ⁴ 50, 1.03.			Mg 20 95 ms	2.004.2761 2.001.2761 2.001	Na 19	0	Ne 18 1,67 s	0+ 24.	F 17 64,8 s	91 1.7 00 5	0 16 99,762	o-6.00019	N 15 0,366	e 0.00004	C 14 5730 a	6-02 667	B 13 17,33 ms	F-18.4. 7.0004 Ph 3.0. 2.4	Be 12 23,6 ms	p-117	LI 11 8,5 ms	2000° 200
					Si 28,0856	a 6.17	AI 26,981539	0.0230					Ne 17 109.2 ms	11 4.0 435 10 4.64 9.77 8.12 10 8.12 10 9.12 10	F 16	p	O 15 2,03 m	84 1.7 16 1	N 14 99,634	e 0.000 er. p 1.0	C 13	# 0,0014	B 12 20,20 ms	F-18.4. 14630 ps 0.2	Be 11 13,8 s	P 11.5. 121255-6731	LI 10	
						14		13					Ne 16	æ	F 15	d	O 14 70,59 s	5 ⁴ 1.8.4.1	N 13 9,96 m	5* 1.2 10 Y	C 12 98,90	* 0.0055	B 11 80,1	a 0.006	Be 10 1,6 - 10 ⁴ a	g- 0,6 40.7	Li 9 178,3 ms	8-13.6. 84 0.7.
									Mg 24,3060	o 0.060	Na 22,989768	e 0.525	Ne 20,1797	# 0.04	F 18,998403	# 0.0085	O 13 8,58 ms	5 ⁴ 16,7 56 1,84, 6,44 7(44307, 3500, 1	N 12 11,0 ms	2* 16.4	C 11 20,38 m	g* 1,0	B 10 19,9	or 0.5 div. o 3840	- Be 9 100	4 0,000	Li 8 840,3 ms	0-123 02n - 1,6
										12		÷		10		6	0 12	æ	11 N		C 10 19,3 *	9" 1.9. - 718, 1002	88		Be 8	5	Li 7 92,5	e 0,045
																					C 9 126.5 ms	0* 15.5. 00 8.34: 10.92.	B 8 770 ms	8 ⁺ 14.1	Be 7 53,29 d	1400 1400 1400	Li 6 7,5	0000 - 1-1-

CNO Zyklus

Abbildung 5.6

Der CNO-Zyklus

NeNa und Mg Al Zyklus

Abbildung 5.7 Der NeNa- und MgAl-Zyklus

SN Überrest CAS A (x-rays)

Gammas von Supernova

SN in CAS A vor 300 a

Figure 1. The youngest Galactic Supernova Remnant Cassiopeia A shining in the 1.16 MeV γ-ray line emission of the radioactive ⁴⁶Ti, produced in the supernova explosion about 320 years ago. The cross marks position of Cas A. The first detection of Cas A in the ⁴⁴Ti line emission was made by COMPTEL on-board Compton Gamma-Ray Observatory (lyudin et al. 1994). This map was produced by combining COMPTEL data for ~6 years of the CGRO mission (lyudin et al. 1997). Galactic coordinate grid is overlayed.

 44 Ti =90a

Neutron-Einfangsprozesse

s-Prozess (slow neutron capture)

erzeugt Kerne bis ²⁰⁹Bi niedrige Neutronendichte He-Brennen (α ,n) sukzessiver Einfang, bis β -Zerfall Zeitskala Jahre aus Verzweigungen, wo $\tau(\beta) \approx \tau(\text{Einfang})$ Isotopenverhältnisse aus Gleichgewicht der Häufigkeiten

$$dH(A) = 0 = H(A-1) \cdot \sigma(A-1) - H(A) \cdot \sigma(A)$$

$$\Longrightarrow \frac{H(A-1)}{H(A)} = \frac{\sigma(A)}{\sigma(A-1)}$$

diese lassen sich aus experimentellen σ(n,γ)
berechnen und abziehen
übrig bleiben Nuklide des

r- Prozess (rapid neutron capture)

erzeugt Kerne bis A≈250, die dann spalten explosiver Prozess hohe Neutronendichte hohe Temperatur

Zeitskala Sekunde	en								
wahrscheinlich be	e ((Kollaps schwerer Sterne)							
wahrscheinlich ve	erschiedene I	Prozesse							
einer bis A≈	:130								
einer bis A≈	250								
vom Experiment:	T _{1/2}	Q_{β}	σ (n,γ)						
	direkt kaum zugänglich								
=	besseres	> besseres Verständnis der Kernstruktur							

Neutron-Einfang: s-Prozess und r-Prozess slow rapid

Neutron-Einfang: s-Prozess slow

r-Prozess und Theorie

rp-Prozess

Schnelle Folge von (p, γ) Reaktionen bis zur p-dripline (~ N=Z) dort (γ ,p) Reaktionen und β^+ - Zerfälle

Wartepunkte an gg-Kernen (N=Z) mit großem $T_{1/2}$

 $\begin{array}{ll} \text{hohe Temperaturen} & kT \sim 150 \ \text{keV} \\ \text{und Dichten} & \rho \sim 10^6 \ \text{g/cm}^3 \end{array}$

Zeitskala $\sim 100 \text{ s}$

wahrscheinlich bei x-ray bursts Novae

n-Stern akkretiert H vom Nachbarn Weißer Zwerg mit H vom Nachbarn

vom Experiment

Lage der p drip-line p Bindungsenergie $T_{1/2}$ an Wartepunkten

rp-process

Fragment Separator FRS

Identified Nuclides

observed with halflives longer than 100ns:

not observed:

), ⁸⁵Tc(1

⁸¹Nb (3

Measured half-lives

+ values used by Schatz et al.

Oak Ridge, PRL 84 (2000) 2104

rp - process

Gamow Peak

Abbildung 8.5 Die verschiedenen relativen Wahrscheinlichkeiten bei nichtresonanten Reaktionen als Funktion der Projektilenergie