Formkoexistenz

Ein paar Gedanken zur Einführung ...

- Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation
- Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab
- ⇒ verschiedene Konfigurationen in einem Kern können verschiedene Deformation haben
- ⇒ Formkoexistenz

Kerndeformation

- ³²Mg, ⁵⁶Ni
- Super- und Hyperdeformation
- Spaltisomere
- Isotopenverschiebung in Hg
- Formisomere und -koexistenz in ^{186,188}Pb

Kerndeformation 1

Entwicklung der Kernoberfläche in Kugelfächenfunktionen

Laborsystem

Kerndeformation 2

Transformation zwischen Laborund intrinsischem Koordinatensystem wird mittels der 3 Euler-Winkel $\Theta_{1,2,3}$ durchgeführt!

Beschränkung auf Quadrupoldeformation

$$\alpha_{2\mu} = \sum_{\nu} a_{2\nu} D^{(2)}_{\mu\nu} \qquad D: \text{ Drehmatrix } D^{I*}_{MK}(\theta_1, \theta_2, \theta_3) = \langle IM | e^{-i\theta_3 I_z} e^{-i\theta_2 I_y} e^{-i\theta_1 I_z} | IK \rangle$$

- Wahl der Achsen des intrinsischen Koordinatensystems identisch zu den Hauptträgheitsachsen der Ladungsverteilung (a₂₁ = a₂₋₁ = 0)
- Guter Drehimpuls I der Zustände bleibt erhalten und intrinsische Projektion K wird in Projektion im Labor M transformiert ... bzw. umgekehrt

Kerndeformation 3

$$a_0 = \beta \cdot \cos \gamma$$
$$a_2 = a_{-2} = \frac{1}{\sqrt{2}} \beta \cdot \sin \gamma$$

 $\begin{array}{l} \beta - \text{Quadrupoldeformation} \\ \gamma - \text{Grad der Abweichung} \\ \text{von axialer Deformation} \end{array}$

Total Energy Surface (TES)

Theoretisch berechnete totale Energie des Kerns als Funktion von β und γ

Formkoexistenz in ³²Mg

Formkoexistenz in ⁵⁶Ni

Superdeformation

 $\frac{Superdeformation}{Kerne mit} \\ Achsenverhältnis \\ von \approx 2:1 \\ \end{cases}$

Bisher wurden rund 250 superdeformierte Banden beobachtet

Formkoexistenz in ¹⁵²Dy

Hochspin-Spektroskopie

Bevölkerung von Kernen bei hohem Drehimpuls in <u>Fusion-Evaporation-Reaktion</u>

Target nucleus Fast Fission Beam Nucleus Compound Formation 7₀ ~0.75 MeV ~2x10²⁰ Hz Rotation 10⁻¹⁹ sec Heavy-ion fusion evaporation -10⁻¹⁵ sec reaction 10⁻⁸ sec Groundstate

EUROBALL

Formkoexistenz in ¹⁵²Dy

Hyperdeformation

Hyperdeformation - Kerne mit Achsenverhältnis 3:1

SHAPE EVOLUTION

Hyperdeformation in ¹⁵²Dy?

Triaxiale Superdeformation in Lu

ND Grundzustand $\epsilon \approx 0.17$

7 Triaxiale SD (TSD) Minima bei $\gamma \approx \pm 20^\circ$ und $\varepsilon \approx 0.36$

Spaltisomere

Isotopenverschiebung in Hg

Isotopenverschiebung (IS) atomarer Übergänge

$$\delta v_{IS}^{A,A'} = \delta v_{Masse}^{A,A'} + \delta v_{Feld}^{A,A'} \quad \delta v_{IS}^{A,A'} / \nu \approx 10^{-6}$$

$$\delta v_{Feld}^{A,A'} = F_{Elektronen} * \left(\delta \left\langle r^2 \right\rangle^{A,A'} + \dots \right)$$

Mittlerer quadratischer Ladungsradius

Kollineare Laserspektroskopie

Lebensdauermessung von Isomeren

RSAM Recoil Shadow Anisotropy Method

CLOVER

Formisomere in ¹⁸⁸Pb

Nilsson-Orbitale für Protonen

Nilsson-Orbitale für Neutronen

Formkoexistenz in ¹⁸⁸Pb - Rotationsbanden

Intensitäten der Inband-Übergänge in Koinzidenz mit Interband-Übergängen lassen sich nur unter Hinzunahme von E0-Übergängen erklären

Bandenmischung

$$\alpha_{total} = \alpha(E2) + \Gamma_e(E0) / \Gamma_{\gamma}(E2)$$

$$\Gamma(E0; J \to J) \propto \left(a \sqrt{1 - a^2} \left[(\beta_1)^2 - (\beta_2)^2 \right] \right)^2$$

$$\Gamma(E2; J \to J) \propto \left(a \sqrt{1 - a^2} \left[\beta_1^2 - \beta_2^2 \right] \right)^2$$

β₁ und β₂ müssen <u>verschieden</u> sein, ergo: Formkoexistenz!!!

	sphärisch	prolat	oblat
$0_{g.s.}^+$	95%	4%	1%
0_{2}^{+}	2%	15%	83%
0 ₃ +	3%	81%	16%
β	0.0	0.2	-0.13

SHIP@GSI

Formkoexistenz in ¹⁸⁶Pb – α -Spektren

Formkoexistenz in ¹⁸⁶Pb

Protonen-Konfigurationen

