Kernphysik I

Ankündigungen: Heute: Grosses Physikalisches Kolloquium Prof. Roth, TU Darmstadt Von der QCD zur Kernstruktur

Die Vorlesung am Freitag den 11. Juli muß leider ausfallen.

Kernphysik I

Kernmodelle:

Schalenmodell

Kernspin des Grundzustandes:

Jedes Orbital hat 2j+1 magnetische Unterzustände, voll besetzte Orbitale haben Kernspin J=0, tragen nicht zum Kernspin bei.

Spin von Kernen mit einem Nukleon ausserhalb der besetzten Orbitale ist durch den Spin dieses Nukleons bestimmt.

Beispiel: Spins um doppelt-magischen Kern ¹⁶O

 Mit dem Schalenmodell können die "magischen" Zahlen erklärt werden.

• Kernspin des Grundzustandes:

Jedes Orbital hat 2j+1 magnetische Unterzustände, voll besetzte Orbitale haben Kernspin J=0, tragen nicht zum Kernspin bei.

Spin von Kernen mit einem Nukleon ausserhalb der besetzten Orbitale ist durch den Spin dieses Nukleons bestimmt.

Beispiele: ${}^{39}Ca_{19} \quad j^{\pi}=3/2^+$ ${}^{41}Ca_{21} \quad j^{\pi}=7/2^ {}^{41}Sc_{20} \quad j^{\pi}=7/2^ {}^{91}Nb_{50} \quad j^{\pi}=9/2^+$

 ${}^{91}Zr_{51}$

 $j^{\pi}=3/2^+$ Z=20 Neutron aus d3/2 $j^{\pi}=7/2^-$ Z=20 Neutron aus f7/2 $j^{\pi}=7/2^-$ N=20 Proton aus f7/2 $j^{\pi}=9/2^+$ N=50 Protonen aus g9/2 $j^{\pi}=5/2^+$ Z=40 Neutron aus d5/2

Magnetische Momente:Bem: Projektion der DrehimpulseFür den g-Faktor g_j gilt: $g_j = \frac{g_j(\hat{l} \cdot \hat{j}) + g_s(\hat{s} \cdot \hat{j})}{|j|^2}$ Bem: Projektion der Drehimpulsemit $j(j+1) = \hat{j}^2 = \hat{l}^2 + 2\hat{l} \cdot \hat{s} + \hat{s}^2$ $ij = 1 - 2\hat{j} \cdot \hat{s} + \hat{s}^2$ $ii = 1 - 2\hat{j} \cdot \hat{s} + \hat{s}^2$ $\hat{l}^2 = l(l+1)$ mit $\hat{l}^2 = (\hat{j} - \hat{s})^2 = \hat{j}^2 - 2\hat{j} \cdot \hat{s} + \hat{s}^2$ mit $\hat{s}^2 = s(s+1) = 3/4$

$$g_{j} = \frac{g_{l} \left\{ j(j+1) + l(l+1) - 3/4 \right\} + g_{s} \left\{ j(j+1) - l(l+1) + 3/4 \right\}}{2j(j+1)}$$
$$\frac{\mu_{Kern}}{\mu_{N}} = g_{Kern} = g_{l} \pm \frac{(g_{s} - g_{l})}{2l+1} \quad \text{für } J = j = l \pm 1/2$$

Einfache Beziehung für den g-Faktor von Einteilchenzuständen.

Vergleich zwischen Experiment und Schalenmodell:

Kern	Zustand	J^P	μ/μ_N		
			Modell	Experim.	
¹⁵ N	$p-1p_{1/2}^{-1}$	$1/2^{-}$	-0,264	-0,283	
¹⁵ O	$n-1p_{1/2}^{-1}$	$1/2^{-}$	+0,638	+0,719	
¹⁷ O	$n-1d_{5/2}$	$5/2^{+}$	-1,913	-1,894	
¹⁷ F	$p-1d_{5/2}$	$5/2^{+}$	+4,722	+4,793	

Magnetische Momente:

$$\left\langle \mu_{z} \right\rangle = \begin{cases} \left[g_{L} \left(j - \frac{1}{2} \right) + \frac{1}{2} g_{S} \right] \mu_{N} & \text{für } j = L + \\ \frac{j}{j+1} \left[g_{L} \left(j + \frac{3}{2} \right) - \frac{1}{2} g_{S} \right] \mu_{N} & \text{für } j = L - \end{cases}$$

für
$$j = L + 1/2$$

für
$$j = L - 1/2$$

g - Faktoren der Nukleonen :

Proton : $g_L = 1$; $g_S = +5.585$ Neutron: $g_{L} = 0; \quad g_{s} = -3.82$

Proton:
$$\langle \mu_Z \rangle = \begin{cases} j + 2.293 \mu_N & \text{für } j = L + 1/2 \\ (j - 2.293) \frac{j}{j+1} \mu_N & \text{für } j = L - 1/2 \end{cases}$$

Neutron: $\langle \mu_Z \rangle = \begin{cases} -1.91 \mu_N & \text{für } j = L + 1/2 \\ +1.91 \frac{j}{j+1} \mu_N & \text{für } j = L - 1/2 \end{cases}$

Magnetische Momente: Schmidt Linien

	Anregungsspektren einzelner Teilchen oder Löcher werden erklärt. Kerne in der Nähe von magischen oder doppelt magischen Kernen können mit dem Finteilchenschalenmodell aut beschrieben werden							
—— 3/2 ⁻	1d _{3/2} -(0000-	-0000-	-0000-	-0000-	-0000-		
—— 5/2 ⁻	2s _{1/2} 1d _{5/2} -	-00-	- 0 0-	-00-	-00-000-	-00-000-		
—— 1/2 ⁻								
	1p _{1/2}							
1/2 ⁺	1p _{3/2} –							
5/2 ⁺	1s _{1/2}							
¹⁷ O ₉ ~ ¹⁷ F ₈		5/2+	1/2+	1⁄2-	5/2 ⁻	3/2-		
	Zustände mit negativer Parität durch aufbrechen							

von tiefer gebundenen Paaren: z.B.: $\frac{1}{2}$ - durch $1p_{1/2}$, Kopplung von $1d_{5/2}$ und $2s_{1/2}$ zu I=2 und 1

•Anregungsspektren einzelner Teilchen oder Löcher (Leuchtnukleon) werden quantitativ erklärt. Kerne in der Nähe von magischen oder doppelt magischen Kernen können mit dem Einteilchenschalenmodell gut beschrieben werden.

Beispiel: Spins und Anregungsenergien um doppelt-magischen Kern ¹⁶O

Magnetische Momente

Operator für magnetisches Moment eines geladenen Teilchens mit Bahn- und Spin-Drehimpuls :

$$\vec{\mu} = \frac{\mathsf{e}}{mc} \Big(g_L \vec{L} + g_S \vec{S} \Big)$$

Angewendet auf Zustand $|jm\rangle$ mit m = m_{max} = j

$$\langle \mu_{z} \rangle = \langle j j | \hat{\mu} | j j \rangle = \frac{1}{2j(j+1)} \Big[g_{L} \{ j(j+1) + L(L+1) - S(S+1) \} - g_{S} \{ j(j+1) + S(S+1) - L(L+1) \} \Big] \mu_{N}$$

Extremes 'Einteilchenmodell': Ungepaartes Nukleon bestimmt Kerneigenschaften

$$|j j\rangle = |L, S, j j\rangle$$
 für das letzte ungepaarte Nukleon (Proton oder Neutron)
= $\left| j \mp \frac{1}{2}, \frac{1}{2}, j j \right\rangle$ für $j = L \pm \frac{1}{2}$ Kopplung.

mit L =
$$j \pm \frac{1}{2}$$
 und S = $\frac{1}{2}$ erhält man:

$$\langle \mu_{z} \rangle = \begin{cases} \left[g_{L} \left(j - \frac{1}{2} \right) + \frac{1}{2} g_{S} \right] \mu_{N} & \text{für } j = L + 1/2 \\ \frac{j}{j+1} \left[g_{L} \left(j + \frac{3}{2} \right) - \frac{1}{2} g_{S} \right] \mu_{N} & \text{für } j = L - 1/2 \end{cases}$$

Langsamer slow und schneller rapid Neutroneneinfang s-process

Schneller Neutroneneinfang rapid neutron capture **r-process**

- alles startet in der Fe Region
- Neutroneneinfang
- Photodisintegration
- (n,γ)↔(γ,n) Gleichgewicht
 ("waiting-point") bei Schalenabschluß
- β-Fluß Gleichgewicht
- Y(Z)• λ_{β} = const.
- für Berechnung sind die Kerneigenschaften:

 S_n und $T_{1/2}$ am wichtigsten

Astrophysik:

- Neutronendichte
- Temperatur
- Zeitskalen

r-Prozess Rechnungen zeigen starke Abweichungen von gemessenen Elementverteilungen

Mögliche Lösung: modifiziertes Schalenmodell durch geänderten Potentialverlauf bei neutronreichen Isotopen

 \rightarrow Zukünftige Experimente mit instabilen, neutronenreichen Kernen