Physics with Exotic Nuclei

Hans-Jürgen Wollersheim

NUclear STructure, Astrophysics and Reaction

Outline

Projectile Fragmentation – A Route to Exotic Nuclei

- Fragmentation Cross Sections
- Nuclear Reaction Rates
- In-Flight Separation of Radioactive Ion Beams
- **FR**agment Separator at GSI
- Comparison FRS Super-FRS
- Identification of **RIB**s
- Excited Fragments Gateway to Nuclear Structure
- ✤ Scattering Experiments with **RIB**s

The Why and How of Radioactive-Beam Research

The Why and How of Radioactive-Beam Research

Atomic nuclei are quantum systems with a finite number of strongly interacting fermions: protons and neutrons.

• How can collective phenomena be explained from individual motion?

The Nuclear Chart Our Road Map from Stable to Exotic Nuclei

Nuclear radii

Nuclear shell structure

Experimental evidence of magic numbers

Indicators for nuclear shell model:

high energies of 2^+_1 state

for nuclei with magic numbers

Solar abundances of elements

Solar abundance ($Si^{28} = 10^6$)

open questions:

- Why is Fe more common than Au ?
- Why do the heavy elements exist and how are they produced?
- Can we explain the solar abundances of the elements?

The chart of nuclides

Spallation & Projectile Fragmentation Reactions A Route to Exotic Nuclei

High-energy proton-induced nuclear reactions

Some early high-energy proton accelerators:

Facility	Energy	from year
Bevatron (Berkeley)	6 GeV	1954
AGS (Brookhaven)	11 GeV	1960
Fermilab (Chicago)	>300 GeV	1967

They were also used to bombard various stable target materials.

These targets were analyzed with radiochemical methods, i.e. γ -spectroscopy with or without chemical separators

Production cross sections and (some) kinematics for suitable radioactive isotopes

High-energy proton-induced nuclear reactions

Important findings:

Energy-independence of cross sections

Mass yields: exponential slope

Proton- versus heavy-ion induced reactions

Proton- and heavy-ion induced reactions give very similar isotope distribution:

Target fragmentation:	$GeV p + A_{target} \rightarrow A$
Projectile fragmentation:	$\text{GeV/u } A_{\text{proj}} + p \longrightarrow A$
are equivalent	

Projectile fragmentation reactions

At GeV energies nucleons can be regarded as a classical particles

- Nucleon-nucleon collisions can be treated classically using measured free nucleon-nucleon cross sections (intra-nuclear cascade).
- In these collisions very *little transfer momentum* is exchanged.
- After the cascade the residual nucleus is *highly excited*.
- Heavy-ion projectiles can be treated as a bag of individual nucleons.

Physical models: Two-step approach

Step 1: Intranuclear-cascade models or Abrasion models Step 2: Evaporation calculation

Projectile fragmentation reactions

Empirical parameterization of fragmentation cross section:

EPAX v.3 K. Sümmerer, Phys. Rev. C86 (2012) 014601 http://web-docs.gsi.de/~weick/epax/

Image: Construction of the second	Image: Construction of the second state of the second s	
EPAX V3, Empirical parametrization of fragmentation cross sections by Klaus Sümmerer, March 2012	EPAX V3, Empirical parametrization of fragmentation cross sections	
projectile: target: fragment: Ap Zp At Zt Af Zf 58 28 > on 9 4 -> to 48 28	EPAX Version 3.1 by Klaus Sümmerer, 15.03.2012	
calculate	Fragmentation cross section !!: projectile Ap=58.000000 Zp=28.000000	
	on target At=9.000000 Zt=4.000000 to produce Af=48.000000 Zf=28.000000 sigma = 1.407530e-14 b The second se	

The Accelerator Facility at GSI

UNILAC Accelerator

The Accelerator Facility at GSI

Where do we do the experiments?

Projectile fragmentation reactions

F(4İR 🏀 🖬 🖬 🕯

Nuclear Reaction Rate

> nuclear reaction rate [s⁻¹] = luminosity [atoms cm⁻² s⁻¹] * σ_f [cm²]

abrasion ablation

 $\succ \sigma_{f}$ [cm²] for projectile fragmentation + fission

Iuminosity [atoms cm⁻² s⁻¹] = projectiles [s⁻¹] * target nuclei [cm⁻²]

Ion	SIS-18 (2008)	SIS-100 (expected)	
$^{20}Ne^{10+}$	$2 \cdot 10^{11}$	²⁰ Ne ⁷⁺	1.6·10 ¹²
$^{40}{\rm Ar}^{18+}$	1.1011	⁴⁰ Ar ¹⁰⁺	$1.4 \cdot 10^{12}$
58Ni ²⁶⁺	$9 \cdot 10^{10}$	⁵⁸ Ni ¹⁴⁺	$1.3 \cdot 10^{12}$
⁸⁴ Kr ³⁴⁺	$8 \cdot 10^{10}$	⁸⁴ Kr ¹⁷⁺	$1.2 \cdot 10^{12}$
$^{132}Xe^{48+}$	$7 \cdot 10^{10}$	¹³² Xe ²²⁺	$1.3 \cdot 10^{12}$
$^{197}Au^{65+}$	$5 \cdot 10^{10}$	¹⁹⁷ Au ²⁵⁺	$1.2 \cdot 10^{12}$
238U73+	$1.6 \cdot 10^{10}$	238 <mark>U</mark> 92+	$1.4 \cdot 10^{10}$
$^{238}U^{28+}$	$1.4 \cdot 10^{10}$	238 <mark>U</mark> 28+	5.0·10 ¹¹

Nuclear Reaction Rate

The optimum thickness of the production target is limited by the loss of fragments due to secondary reactions

Primary + secondary reaction rate:

$$\phi_f[s^{-1}] = \phi_p[s^{-1}] \cdot \frac{6.02 \cdot 10^{23} \cdot \sigma_f[cm^2]}{A_t[g]} \cdot \frac{1}{\mu_f - \mu_p} \cdot \left(e^{-\mu_p \cdot x[g/cm^2]} - e^{-\mu_f \cdot x[g/cm^2]}\right)$$

with
$$\mu = \frac{6.02 \cdot 10^{23}}{A_2[g]} \cdot \sigma_{reaction}[cm^2]$$

Example: ¹²⁴Xe on ⁹Be
$$\rightarrow$$
 ¹⁰⁴Sn, $\sigma(^{124}Xe+^{9}Be) = 3.65[b] \rightarrow \mu_{p} = 0.244[cm^{2}/g]$
 $\sigma(^{104}Sn+^{9}Be) = 3.44[b] \rightarrow \mu_{f} = 0.230[cm^{2}/g]$

 $\phi_f[s^{-1}] = \phi_p[s^{-1}] - \phi[s^{-1}] = \phi_p[s^{-1}] \cdot \left\{ 1 - e^{-N_t[cm^{-2}]} \cdot \sigma_f[cm^2] \right\} \text{ (thick target)}$

In-Flight Separation of Radioactive Ion Beams

Fragmentation at Relativistic Energies

Radioactive Ion Beams at GSI

FRagment Separator at GSI

Rare Isotope Selection at FRS: Bp-AE-Bp Selection

Rare Isotope Selection at FRS: Bp-AE-Bp Selection

Production, Separation, Identification

Production, Separation, Identification

Production, Separation, Identification

FRagment Separator

Comparison of FRS with Super-FRS

-(AİR 🌮 🖬 🖬 🖬