Physics with Exotic Nuclei

Hans-Jürgen Wollersheim

Outline

* Excited Fragments – Gateway to Nuclear Structure

- Nuclear Isomers (shape-, spin-, K-traps)
- In-Flight Separation of excited Radioactive Ion Beams
- Stopped Beam Experiments and Limitations to Decay Spectroscopy
- Nuclear Shell Closure in ⁹⁸Cd and ¹³²Cd
- Seniority Isomers in ²¹⁰Pb, ²¹²Pb, ²¹⁴Pb, ²¹⁶Pb
- T=1 Isospin Symmetry Mirror Nuclei
- Silicon Implantation Detector β-Decay of ¹⁰⁰Sn
- Scattering Experiments with **RIB**s Nuclear Structure Results

Production of Radioactive Ion Beams

Fragmentation

in $\sim 20\%$ of all cases the fragment is excited

time-of-flight through the fragment separator FRS ~300 ns

Isomeric states can be investigated!

What is a Nuclear Isomer?

<u>Nuclear Isomer</u> – a long-lived excited nuclear state ($T_{1/2} > 1$ ns) decays by emission of α , β , γ , p, fission, cluster

The first one discovered by O. Hahn in Berlin in 1921 – decay of ²³⁴Pa (70 s) von Weizsacker, A. Bohr & B. Mottelson

$$1/\tau \sim \mathbf{E}_{\gamma}^{2\lambda+1} \mid < \psi_{\mathbf{f}} \mid \mathbf{T} \mid \psi_{\mathbf{i}} > \mid$$

Three Types of Isomers

G S Ŭ

1. Shape Isomers

1. Shape Isomers

F(4İR 🌮 🖬 🖬 🕯

D. Gassmann et al., Phys.Lett. B497 (2001) 181

proton $-\mathbf{F}(\mathbf{i}\mathbf{\hat{R}}) = \mathbf{F}(\mathbf{i}\mathbf{\hat{R}})$

neutron

3. Spin Isomers

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

3. Spin Isomers

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

Experimental set-up for isomer decay

R. Grzywacz et al. Phys. Rev C55 ,1126 (107)

3.5

3

Experimental set-up with passive target

implantation in Cu-plate

15 Cluster detectors with 105 Ge crystals $\varepsilon_{\gamma} = 11\%$ at 1.3 MeV, 20% at 550 keV, 35% at 100 keV

very high γ-ray efficiency

• high granularity (prompt flash problem)

S. Pietri et al., NIM B261 (2007), 1079

Limitations to Isomer Spectroscopy

Identification of ¹³⁰₄₈Cd₈₂

Limitations to Isomer Spectroscopy

¹³⁰Cd: DGF-timing

Decay time range: 20 ns ... 20 µs

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

Decay Spectroscopy Probes Shell Closures

¹³⁰Cd: DGF-timing

Decay time range: 20 ns ... 20 µs

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

Decay Spectroscopy Probes Shell Closures

No Shell quenching observed

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

8⁺(g_{9/2})⁻² Seniority Isomers in ⁹⁸Cd and ¹³⁰Cd

two proton holes in the $g_{9/2}$ orbit

No dramatic shell quenching!

 $\mathbf{0}^+$

A. Jungclaus et al., Phys. Rev. Lett. 99 (2007), 132501

01

The astrophysical r-process 'path'

Assumption of a N=82 shell quenching leads to a considerable improvement in the global abundance fit in r-process calculations !

Level Scheme of ²¹⁰Pb

bairing energy) esidual interaction !

Level Schemes in Neutron-Rich Pb Isotopes

Pb205	Pb206	Pb207	Pb208	Pb209 3.253 h	Pb210 22.3 y	Pb211 36.1 m	Pb212 10.64 h	Pb213	Pb214 26.8 m	Pb215	Pb216	Pb217	Pb218
5/2-	0+	1/2-	0+	9/2+	0+	9/2+	0+	(9/2+)	0+	(5/2+)			
EC	24.1	22.1	52.4	β-	β-,α	β-	β-	β-	β-	β-			

T=1 Isospin Symmetry in pf-shell Nuclei

search for isospin breaking effects

decay of the excited 10⁺-state by proton emission and γ -radiation

D. Rudolph, R. Hoischen et al., Phys. Rev. C78 (2008), 021301

Identification of 54Ni

The big surprise ...

Active Target Silicon IMplantation Detector and Beta Absorber

Spectroscopy of the doubly magic nucleus ¹⁰⁰Sn and its decay

Spectroscopy of the doubly magic nucleus ¹⁰⁰Sn and its decay

Theoretical predictions for the ¹⁰⁰Sn level schemes

Gamov-Teller strength and Q_{EC} value in the β -decay of ¹⁰⁰Sn

• 100Sn is an ideal testing ground to investigate GT-strength:

pure GT spin-flip transition: $0^+ \Longrightarrow (\pi g_{9/2}^{-1} \nu g_{7/2}) 1^+$

 Almost the whole strength of the GT resonance is covered by the energy window of the β⁺-decay

Theoretical calculation of the distribution of the GT-strength:

97% of the whole strength is concentrated in a single state, which is accessible in the β^+ -decay

$$B_{GT}(ESM) = \frac{4\ell}{2\ell + 1} \cdot \left(1 - \frac{N_{\nu g_{7/2}}}{8}\right) \cdot N_{\pi g_{9/2}} = 17.78$$

with $\ell = 4 N_{vg7/2} = 0 N_{\pi g9/2} = 10$

Gamov-Teller strength and Q_{EC} value in the β -decay of ¹⁰⁰Sr

The **Gamow-Teller Strength B**_{GT} (only one final state populated) can be calculated from the half life $T_{1/2}$ and the Fermi Phasespace Integral $f(Z, E_0)$:

$$f(Z, E_0) \cdot T_{1/2} = \frac{2\pi^3 \hbar^7}{m_e{}^5 c^4 G_F{}^2} \cdot \frac{\ln 2}{g_v{}^2 \cdot |M_F|^2 + g_A{}^2 \cdot |M_{GT}|^2}$$

$$G_{F}/(\hbar c)^{3} = 1.16637(1) \cdot 10^{-5} \text{ GeV}^{-2}, \ g_{A}/g_{V} = 1.2695 \pm 0.0029$$

$$f(Z, E_0) \cdot T_{1/2} = \frac{6142.8s}{B_F + (g_A/g_V)^2 \cdot B_{GT}}$$

In the case of a pure Gamow-Teller decay the transition strength can be calculated in the following way:

$$B_{GT} = \frac{3811.5s}{f(Z, E_0) \cdot T_{1/2}} = 9.1^{+4.8}_{-2.3}$$

Fermi-integral with LOGFT program NNDC

Gamov-Teller strength and Q_{EC} value in the β -decay of ¹⁰⁰Sn

$$B_{GT}(ESM) = \frac{4\ell}{2\ell + 1} \cdot \left(1 - \frac{N_{\nu g_{7/2}}}{8}\right) \cdot N_{\pi g_{9/2}} = 17.78$$

with $\ell = 4 N_{\nu g7/2} = 0 N_{\pi g9/2} = 10$

$$B_{GT} = \frac{3811.5s}{f(Z, E_0) \cdot T_{1/2}} = 9.1^{+4.8}_{-2.3}$$

The main condition for the existence of isolated **Super Gamow-Teller transition** is that the spin-orbit gap between the ℓ +1/2 and ℓ -1/2 orbits (in ¹⁰⁰Sn ℓ =4 orbitals $\pi g_{9/2}, \nu g_{7/2}$) be sufficiently small compared to the shell gap for protons and neutrons (6 MeV), so that the 1-particle-1-hole states are isolated below the 2particle-2-hole states.

Gamov-Teller strength of Sn isotopes

Gamov-Teller strength and Q_{EC} value in the β -decay of ¹⁰⁰Sn

$$Q_{EC} = E_{\beta} + E(1^+) + 2m_ec^2$$

