Physics with Exotic Nuclei

Hans-Jürgen Wollersheim

Outline

***** Scattering Experiments with **RIBs** – **Nuclear Structure Results**

- Experimental evidence for closed-shell nuclei
- Scattering experiments at relativistic energies
- Projectile-like identification (Z, A) and scattering angle θ
- Doppler-shift correction of the emitted γ-rays

Physics with Exotic Nuclei Experimental evidence for magic numbers close to stability

Physics with Exotic Nuclei Experimental evidence for magic numbers close to stability

Nuclei with magic numbers of neutrons/protons

high energy of 2_1^+ state

low B(E2; $2_1^+ \rightarrow 0^+$) values

transition probability measured in single particle units (spu)

If we move away from stability?

Production, Separation, Identification

FRagment **S**eparator

Standard FRS detectors

TPC-**x,y position** @ S2,S4

Plastic scintillator (**TOF**) @ S4

¹⁰⁴Sn fragments using ¹²⁴Xe at 793 MeV/u

~2400 % more tracking efficiency
> good A/Q resolving power

 $E^* = 2.615 MeV$

 $B(E3; 0 \rightarrow 3^{-}) = 34Wu$

 C_{P} , C_{T} half-density radii

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_P e^2}{\hbar c}\right)^2 \cdot \frac{\pi}{e^2 b^{2\lambda - 2}} \cdot B(\pi\lambda; 0 \to \lambda) \cdot \begin{cases} (\lambda - 1)^{-1} & \text{for } \lambda \ge 2\\ 2\ln(b_a/b) & \text{for } \lambda = 1 \end{cases}$$

Atomic Background Radiation

Radiative electron capture (REC) capture of target electrons into bound states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target: $\sigma \sim Z_p^2 \cdot Z_t^2$

relativistic Coulomb excitation

Lund-York-Cologne CAlorimeter

LUND UNIVERSITY THE UNIVERSITY of Jork Mile University of Cologne

PreSPEC target chamber variable target position (13cm, 23cm)

Additional *γ***-Ray Background Radiation**

³⁷Ca beam at 196 MeV/u **Coulomb excitation:** A/Q - 37 Ca all Ca detected in **AE-E**

1‰ interaction target most γ -rays from CATE

time spectrum

A/Q - ³⁷Ca K detected (mainly ³⁶K)

700

800

E [keV]

900

1000

1100

 $\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - \beta \cdot \cos \theta_{\gamma}^{\ell ab}}{\sqrt{1 - \beta^2}}$

 80 Kr $\rightarrow ^{197}$ Au, 150 AMeV

600

Intensity [counts / keV]

40 - 20 - 400

500

Doppler-Shift Correction ²³⁸U on ¹⁹⁷Au (386 mg/cm²) at 183 AMeV

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

Doppler-Shift Correction ²³⁸U on ¹⁹⁷Au (386 mg/cm²) at 183 AMeV

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

Doppler Broadening

γ-ray set-up with higher efficiency

Ivan Kojouharov

Advanced GAmma Tracking Array

Encapsulation

CANBERRA EUR

Signals from 36 segments + core are measured as a function of time (γ-ray interaction point)

John Strachan

re

MURCH(

Au, Be target

D

re

-

HECTOR team

STP

1----

133

AGATA at PreSPEC

High-energy Coulomb excitation triaxiality in even-even nuclei (N=76)

First observation of a second excited 2⁺ *state* populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge-detectors.

- ➤ shape symmetry
- collective strength

 $\frac{B(E2;2_2 \to 2_1)}{B(E2;2_1 \to 0)} = \frac{\frac{20}{7} \frac{\sin^2(3\gamma)}{9 - 8\sin^2(3\gamma)}}{1 + \frac{3 - 2\sin^2(3\gamma)}{\sqrt{9 - 8\sin^2(3\gamma)}}}$

	$1 - \frac{3 - 2\sin^2(3\gamma)}{3}$
$B(E2;2_2 \rightarrow 0)$	$1 - \frac{\sqrt{9-8\sin^2(3\gamma)}}{\sqrt{9-8\sin^2(3\gamma)}}$
$\overline{B(E2;2_1 \to 0)}$	$\frac{1}{1+3-2\sin^2(3\gamma)}$
	$\sqrt{9-8\sin^2(3\gamma)}$

$E_{2}(2)$	$3+\sqrt{9-8\sin^2 3\gamma}$
$E_1(2)$	$\frac{1}{3-\sqrt{9-8\sin^2 3\gamma}}$

Ivan Kojouharov, Michael Reese, Namita Goel, Liliana Cortes, Frederic Ameil, Bogdan Szczepanczyk H.-J. W., Damian Ralet, Pushpendra Singh, Stephane Pietri, Tobias Habermann, Edana Merchan, Giulia Guastalla, Plamen Boutachkov, Adolf Brünle, Ian Burrows, Jonathan Strachan, (Paul Morral), Jürgen Gerl, (Henning Schaffner, Magda Gorska)

Slowed down beams – new experimental perspectives

Slowed down beams – beam characteristics

Slowed down beams – experimental set-up

Slowed down beams – experimental set-up

TOF between MCP and DSSSD

Time resolution 200 ps for one of the 256 detector pixels

MCP DSSSD Akhil Jhingan (IUAC)

Reactions with Relativistic Radioactive Beams – R³B

Excitation energy E^* from kinematically complete measurement of all outgoing particles

$$E^* = \left(\sqrt{\sum_i m_i^2 + \sum_{i \neq j} m_i m_j \gamma_i \gamma_j (1 - \beta_i \beta_j \cos \vartheta_{ij})} - m_{proj}\right) c^2 + E_{\gamma,sum}$$

.

Dipole strength distribution of 68Ni

.6

mean field calculation 4 68 $S \begin{bmatrix} e^2 fm^2 / MeV \end{bmatrix}$ E10 8 10 E [MeV] 10 12 6

E.Litvinova et al.; PRC 79, (2009) 054312

Pygmy resonance

GDR + PDR (fit) GDR (fit)

direct γ -decay branching ratio:

51

 $\Gamma_0/\Gamma = 7(2)\%$

O. Wieland et al.; Phys. Rev. Lett 102, 092502 (2009)

D. Rossi et al.; Phys. Rev. Lett 111, 242503 (2013)