
 Applying γ-imaging techniques to nuclear physics experiments 
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 Why position sensitive γ-ray detectors for radioactive ion beams? 

 3D position sensitive HPGe detectors 

 Characterization of position sensitive HPGe detectors 
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γ-ray spectroscopy with 3D position sensitive HPGe detectors 

In flight γ-ray spectroscopy 

Decay γ−ray spectroscopy after implantation 

HISPEC 

DESPEC 

Efficiency:   43% (Mγ =1)   28% (Mγ =30) 
P/T:              58% (Mγ=1)    49% (Mγ=30) 
Angular resolution: ~1º  
FWHM (1 MeV,  v/c=50%)  ~ 6 keV  

Advanced 
GAmma 
Tracking 
Array 



γ-ray spectroscopy with 3D position sensitive HPGe detectors 
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In flight γ-ray spectroscopy 
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γ-ray spectroscopy with 3D position sensitive HPGe detectors 

In flight γ-ray spectroscopy 

Decay γ−ray spectroscopy after implantation 

θ 

Background suppression and 
P/T can be improved by 
applying imaging techniques. 

S. Tashenov, et al. NIMA 586 (2008) 224-228 



HPGe detector 

9 cm 

7 cm 



Gamma Arrays based on Compton 
 Suppressed Spectrometers 

Tracking Arrays based on 
Position Sensitive Ge Detectors 

ε ~ 50 - 25 % 
( Mγ = 1 - Mγ = 30) 

ε ~ 10 - 7 % 
 ( Mγ = 1 – Mγ = 30) 

GAMMASPHERE EUROBALL GRETA AGATA 



HPGe detector: working principle 
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HPGe detector: position sensitivity 
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Highly segmented  
HPGe detectors AGATA:  

Advanced Gamma Tracking Array 

Digital electronics 
to record and  

process segment signals 

Pulse Shape Analysis to 
identify the interaction 

position coordinates  
 
 
 (x,y,z,E)i 

Reconstruction of tracks  
e.g. by evaluation of 

permutations  
of interaction points 

reconstructed γ-rays 

Ingredients of γ-ray tracking 



Method to characterize the pulse shape of HPGe detectors 

Determine a data-base of pulse shapes S(x,y,z) which allows one to correlate an 
arbitrarily measured pulse, with an interaction position inside the detector. 

How to do this? 

Using PET principle in combination with γ-ray imaging techniques ! 

? 



•Large FoV of about 20 cm diam. 

•Low Spatial Resolution 5mm-1cm 

•Small FoV of about 3-4 cm diam. 

•Higher Spatial Resolution 2-3mm 

Requirements: 

• Excellent resolution Δx = 2 mm 

• Large field of view FoV = 8x9 cm2 
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•Small FOV of about 3-4 cm diam. 

•Higher Spatial Resolution 2-3mm 

Requirements: 

• Excellent resolution Δx = 2 mm 

• Large field of view FOV = 8x9 cm2 

Gem-imaging.com 

Which γ-camera to use? 
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•Small FOV of about 3-4 cm diam. 

•Higher Spatial Resolution 2-3mm 

Requirements: 

• Excellent resolution Δx = 2 mm 

• Large field of view FOV = 8x9 cm2 

Gem-imaging.com 

Which γ-camera to use? 

Scintillator 

Position 
Sensitive 

 PMT 

γ-ray  γ-ray 2 



16 wires in X axis and 16 wires in Y axis  

Hamamatsu R2486 PSPMT 

Photocathode = 56.25 mm 

d = 76 mm 

t = 3 mm    

ρ = 7.4 g/cm3 

LYSO scintillator  
Cerium-doped Lutetium 
Yttrium Orthosilicate 

C.Domingo Pardo, N. Goel, et.al., IEEE, Vol.28, Dec. 2009 

Gamma camera: Individual multi-anode readout 



Position calibration 

• Determine:  Xr(xm,ym), Yr(xm,ym) Gamma-ray scattering technique 

Grid raw image when it is parallel to PSD surface (0 deg) 

 00 position 



Position reconstruction 

LYSO =76 
mm 

Photocathode=56.26 
mm 

Central Interaction Peripheral Interaction 

 C. Domingo Pardo, N.Goel, et.al., IEEE, Dec. 2009 Volume: 28 Issue 12 

average charge profile 
at the center  

Reference peak fitting  
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C.W.Lerche, et.al., NIM A, Vol 537, pp. 326-330, Jan. 2005 



Position reconstruction 

Gaussian fitting  Reference peak fitting  

Linear for 50 mm 

Field of view = 28 cm2 

Pos. X (mm) 

Gaussian fitting works relatively well 
in the central region 

Average spatial resolution in X and Y ~ 1mm 

Pos. X (mm) 



Characteristics: 

•  Faster 

•  Precision: 1-2 mm 

•  Imaging capability 

Requirements: 
1. Position sensitive detector 
   - Excellent Δx/x 
   - Large field of view 
2. Method to compare the pulses 

Rotating table 

Position sensitive detector 
22Na 

Scanner at GSI 



Advantage over conventional scanner: Full detector can be scanned in one measurement 
10 times faster than a conventional scanner                                                            
Accuracy of simulations can be checked for complex regions of electric field 

Superiority over conventional scanner 

BGO BGO 

coincidence between the Germanium and BGO detectors for 
90 degree Compton scattered events for depth determination 

137Cs 



a) 

F.C.L. Crespi, et al. NIM A 593 (2008), 440 

Scanner based on pulse shape comparison scan 

a) 



a) 

b) 

b) 

Geometric crossing point: x,y,z 

Common pulse out of data sets (a) & (b) 

a) 

Collimated source 

Scanner based on pulse shape comparison scan 

F.C.L. Crespi, et al. NIM A 593 (2008), 440 



22Na 

Position sensitive 
 detector 

a) 

b) 

Rotated by 
900 

• Recording  pulse shapes for 
positions (a) and (b) 
 

• Identical signals at the crossing 
point. 
 

   
 
 
 

511 keV 

22Na 

Pulse shape comparison scan method based on  
a position sensitive detector 



χ2 minimization method 
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Characterisation of a planar HPGe detector 

Front view Side view 

Planar Ge 

d = 4 cm 

t = 2 cm 

22Na Position sensitive detector 



Detector scan (test measurements) 

Front view (0 deg): 

Side view (90 deg): 



Detector scan (test measurements) 

Front view (0 deg): 

Side view (90 deg): 



Detector scan (data analysis) 



Experimental validation of the method 



AGATA: Advanced Gamma Tracking Array 

• 4π array of germanium crystals  

• 180 segmented crystals arranged around the reaction target 

• 3D sensitivity 

Symmetric AGATA prototype crystal  



Signal shapes from all 36 segments 

Photopeak event  

Most significant transient charge signals are from the direct neighbouring segments 
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We have the method, the device and the detector ready, lets do the scan of AGATA!  

Direct neighbours of segment F3 

Combined trace for pulse shape comparison 





2D projected images for 511 keV coincident photopeak events in position sensitive detector and AGATA 

Intensity distribution 



Experimental  Simulated 
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Electric field 

Multi Geometry Simulation  
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Risetime distribution plots 



Intensity distribution for segments in row F 

Segment F3 Segment F2 Segment F1 

Geometric  

segmentation 
MGS Segmentation  

radius (mm) 

Effective segmentation 



Experimental  Simulated  

Discrepancy in the T90 values near the core in ring 1 ~ 50 ns 

Extremely important to have an experimental pulse shape basis for PSA to be applied to the 
complicated geometries. 

t(ns) t(ns) 

From 2D to 3D: first deep insight into the detector 



Summary & outlook 

• We have developed a γ-camera with spatial resolution, linearity and field of view substantially 
improved with respect to similar existing devices (3 times larger FOV, 2 times better resolution). 

• These improvements in the detection system allow us to characterize the pulse shape of HPGe 
detectors with an spatial matrix resolution of about 2 mm and in a short period of time (about 2 
days per crystal of 9x7 cm2 size compared to 3 months needed by other approaches). 

• The good performance of this new detection system makes it very suitable for many γ-ray  
imaging applications, not only in RIB experiments but also e.g. for medical physics 

 

• Our system uses conventional NIM and VME electronics, which makes it not easily portable, 
not easily scalable and rather expensive if one wants to build many of these devices. However, 
this drawback could be overcome thanks to the increasing technology of electronics, e.g. a new 
acquisition system based on ASIC, FPGA, etc technologies. This would also make the system 
more suitable for medical applications. 

• Applications with thicker scintillation crystals (1 cm) may become possible, without 
compromising its good performance, thanks to the more accurate measurement of the DOI. (Tests 
are in progress). 
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• 1.Next generation of segmented HPGe based gamma arrays 
•    for inflight spectroscopy 
• 2.Pulse shape analysis and gamma ray tracking 
• 3.A novel scanner based on pulse shape comparison scan 
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• 7.Comparison with simulation 
• 8.Implement signal basis for PSA 
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