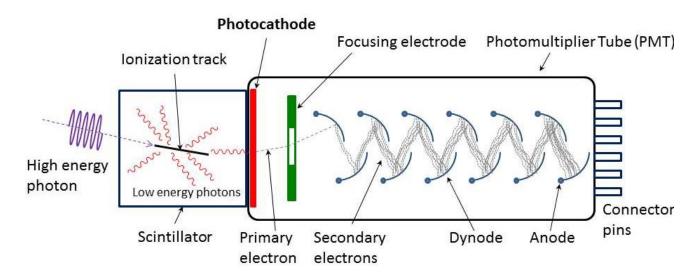

Scintillators – General Characteristics

Principle: dE/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ...]

Main Features: Sensitivity to energy Fast time response Pulse shape discrimination


Requirements

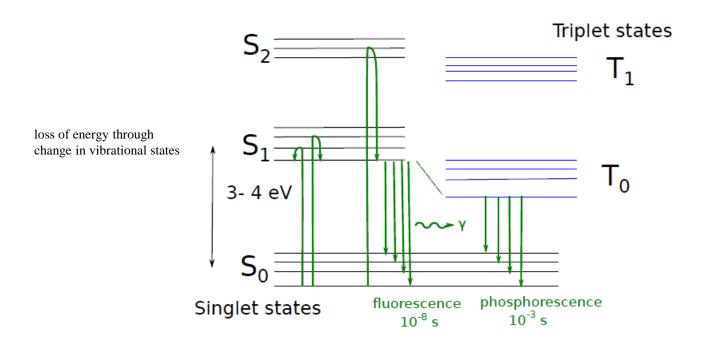
High efficiency for conversion of excitation energy to fluorescent radiation Transparency to its fluorescent radiation to allow transmission of light Emission of light in a spectral range detectable for photosensors Short decay time to allow fast response

Scintillators – basic counter setup

- 1. An incident photon or particle ionizes the medium.
- 2. Ionized electrons slow down causing excitation.
- 3. Excited states immediately emit light.
- 4. Emitted photons strike a light-sensitive surface.
- 5. Electrons from the surface are amplified.
- 6. A pulse of electric current is measured.

Scintillation materials:

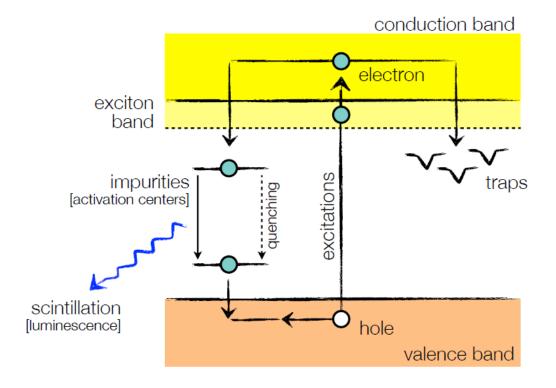
- Inorganic crystals
- Organic scintillators
- ☐ Polymeres (plastic scintillators)


Photosensors:

- Photomultipliers
- Micro-Channel Plates
- Hybrid Photo Diodes
- Visible Light Photo Counter
- Silicon Photomultipliers

Scintillation counters

- Luminescence: Emission of photons (visible light, UV, X-ray) after absorption of energy.
- Scintillation: Emission of photons following the excitation of atoms and molecules by radiation.
- Fluorescence: Emission of light by a substance that has absorbed light or another electromagnetic radiation of a different wave length. In most cases the emitted light has a longer wavelength. The emission follows shortly after ~ 10 ns.
- ❖ Phosphorescence: Similar to Fluorescence, however the re-emission is not immediate. The transition between energy levels and the photon emission is delayed (ms up to hours)


Inorganic crystals

Materials:

Sodium iodide (NaI) Cesium iodide (CsI) Barium fluoride (BaF₂) ...

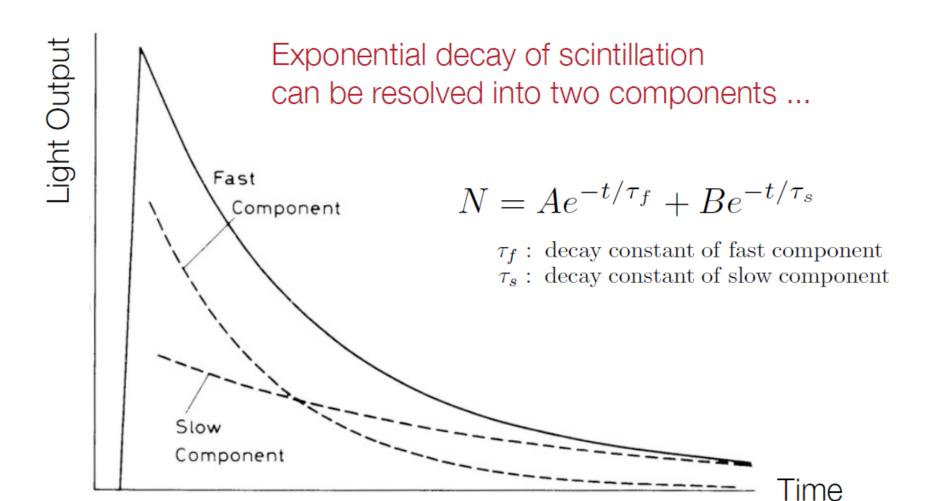
Mechanism:

Energy deposition by ionization Energy transfer to impurities Radiation of scintillation photons

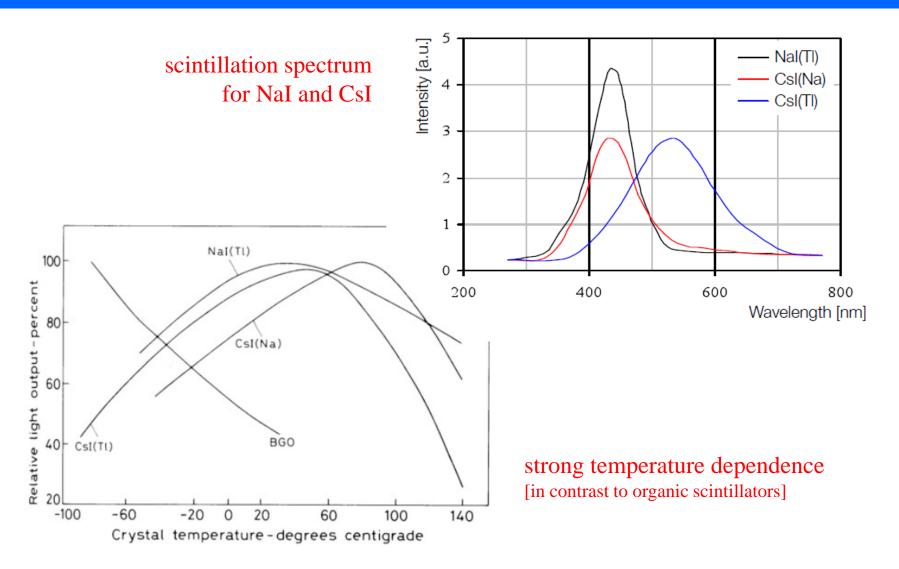
Time constants:

Fast: recombination from activation centers [ns $\dots \mu s$]

Slow: recombination due to trapping [ms \dots s]

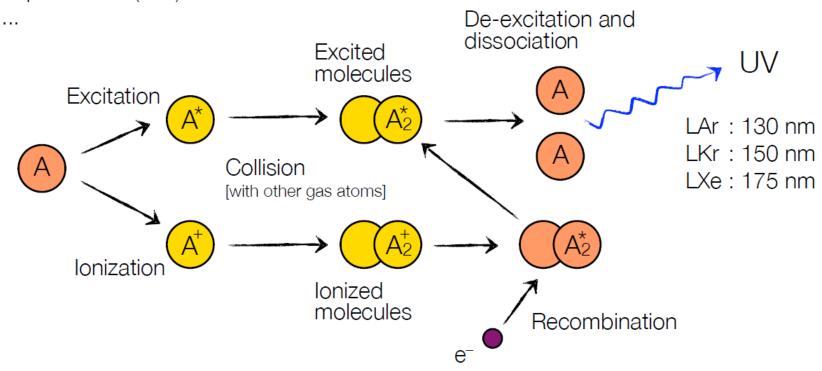

Energy bands in impurity activated crystals

showing excitation, luminescence, quenching and trapping


Inorganic crystals – time constants

Inorganic crystals – light output

Scintillation in liquid nobel gases


Materials:

Helium (He)
Liquid Argon (LAr)
Liquid Xenon (LXe)

Decay time constants:

Helium : $\tau_1 = .02 \,\mu\text{s}$, $\tau_2 = 3 \,\mu\text{s}$

Argon : $\tau_1 \le .02 \,\mu s$

Inorganic scintillators - properties

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4·10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8·10 ³
CsF	4.1	1.48	390	0.003	2·10 ³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10²
LHe	0.1	1.02	390	0.01/1.6	2·10²
LAr	1.4	1.29*	150	0.005/0.86	4·10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4·10 ⁴

^{*} at 170 nm

The time for 1/e of the atoms to remain excited is the characteristic decay time $\boldsymbol{\tau}$

Inorganic scintillators - properties

Numerical examples:

NaI(Tl)
$$\lambda_{\text{max}} = 410 \text{ nm}; \rightarrow \text{h} \cdot \text{v} = 3 \text{ eV}$$

photons/MeV = 40000

 $\tau=250\;ns$

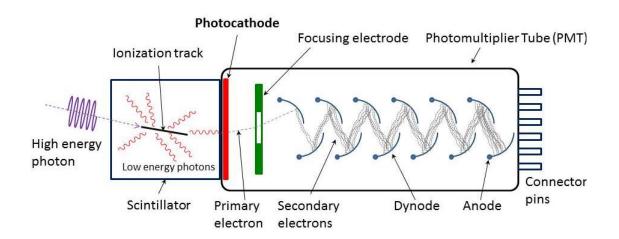
PbWO₄
$$\lambda_{\text{max}} = 420 \text{ nm}; \rightarrow \text{h} \cdot \text{v} = 3 \text{ eV}$$

photons/MeV = 200

 $\tau = 6 \text{ ns}$

Scintillator quality:

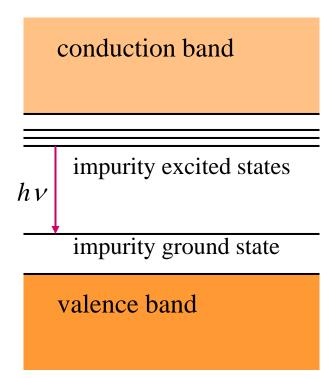
Light yield $\varepsilon_{SC} \equiv$ fraction of energy loss going into photons


Only a few percent of the deposited energy is transferred into light.

The remaining energy is used up be ionization, etc.

 $h = 0.41 \cdot 10^{-14} [eV/Hz]$

Photon statistics


Typical problem

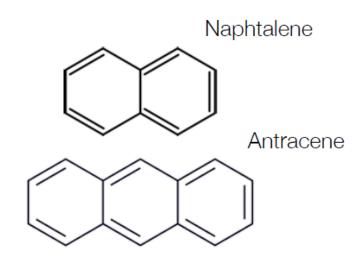
- Gamma rays of 450 keV are absorbed with 12% efficiency. Scintillator photons with average 2.8 eV produce photoelectrons 15% of the time.
- What is the energy to produce a measurable photoelectron?
- How does this compare to a gas detector?

Band structure

- Impurities in the crystal provide energy levels in the band gap.
- Charged particles excites electrons to states below the conduction band.
- Deexcitation causes photon emission.
 - Crystal is transparent at photon frequency.

Impurities improve visible light emission

Organic scintillators

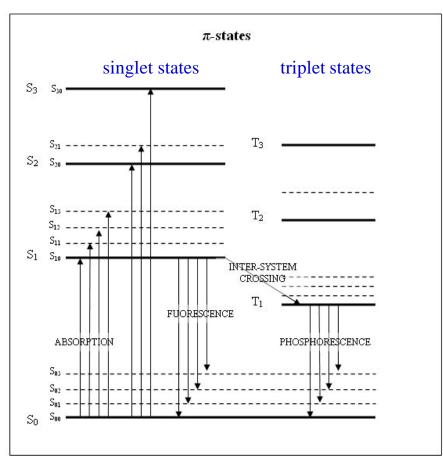

Aromatic hydrocarbon compounds:

e.g. Naphtalene $[C_{10}H_8]$ Antracene $[C_{14}H_{10}]$ Stilbene $[C_{14}H_{12}]$


Very fast! [decay times of 0 ns]

Scintillation light arises from delocalized electrons in π -orbitals

Transition of 'free' electrons ...

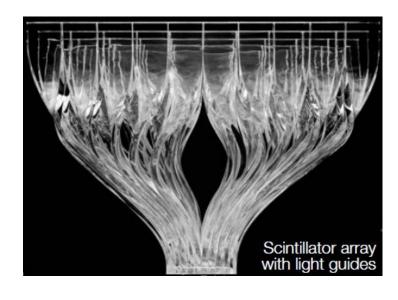


Scintillation is based on electrons of the C=C bond ...

Organic scintillators – excited rings

 π -electronic energy levels of an organic molecule.

 S_0 is the ground state. S_1 , S_2 , S_3 are excited singlet states. T_1 , T_2 , T_3 are excited triplet states. S_{00} , S_{01} , S_{10} , S_{11} etc. are vibrational sublevels.


- π -bonds are most common in aromatic carbon rings.
- Excited states radiate photons in the visible and UV spectra.
 - Fluorescence is the fast component $(S_1 \rightarrow S_0 < 10^{-8} \text{ s})$
 - Phosphorescence is the slow component $(T_0 \rightarrow S_0 > 10^{-4} \text{ s})$

Plastic scintillators

Organic scintillators can be mixed with polystyrene to form a rigid plastic

Some widely used solvents and solutes

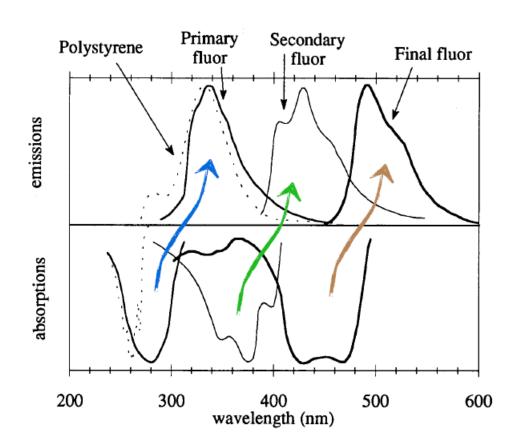
	solvent	secondary	tertiary
		fluor	fluor
Liquid	Benzene	p-terphenyl	POPOP
scintillators	Toluene	DPO	BBO
	Xylene	PBD	BPO
Plastic	Polyvinylbenzene	p-terphenyl	POPOP
scintillators	Polyvinyltoluene	DPO	TBP
	Polystyrene	PBD	BBO
			DPS

Organic scintillators - properties

Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4·10³
Antracene	1.25	1.59	448	30	4·10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	$2.5 \cdot 10^2$
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

^{*} Nuclear Enterprises, U.K.
** Bicron Corporation, USA

Wavelength shifting


Principle:

Absorption of primary scintillation light Re-emission at longer wavelength

Adapts light to spectral sensitivity of photosensor

Requirements:
Good transparency for emitted light

Schematics of wavelength shifting principle

Scintillators - comparison

Inorganic Scintillators

Advantages high light yield [typical $\varepsilon_{SC} \approx 0.13$]

high density [e.g. PbWO₄: 8.3 g/cm³]

good energy resolution

Disadvantages complicated crystal growth

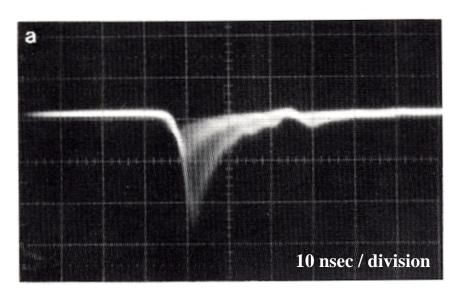
large temperature dependence

Organic Sintillators

Advantages very fast

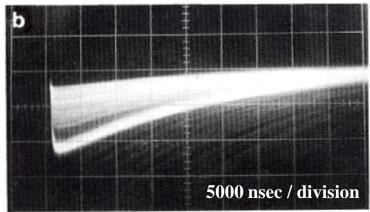
easily shaped

small temperature dependence


pulse shape discrimination possible

Disadvantages lower light yield [typical $\varepsilon_{SC} \approx 0.03$]

radiation damage


Oscilloscope traces from scintillation counters

Plastic scintillator

Plastic

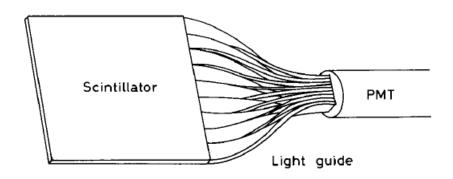
Vert.scale: 0.2 V/cm Hor.scale: 10 ns/cm Source: 207 Bi 10µCi

Inorganic crystal, NaI

NaI

Vert.scale : 0.2 V/cm Hor.scale : 5μs/cm Source : 137Cs 10μCi

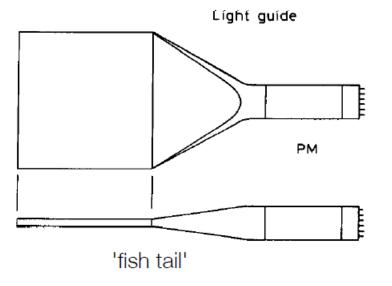
Longer time scale for fluorescence to occur



Scintillation counters - setup

Scintillator light to be guided to photosensor

→ light guide [plexiglas, optical fibers]
 light transfer by total internal reflection
 [may be combined with wavelength shifter]



Liouville's Theorem:

Complete light transfer impossible as $\Delta x \cdot \Delta \theta = \text{const.}$ [limits acceptance angle]

Use adiabatic light guide like 'fish tail';

→ appreciable energy loss

Liouville's Theorem

Consider a phase space element for a photon in a light guide

x = transverse coordinate

 $p = n \sin \alpha = angular divergence$

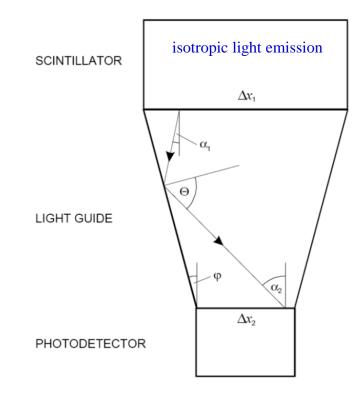
Liouville's theorem says $\Delta x_1 \Delta p_1 = \Delta x_2 \Delta p_2$ $2 \Delta x_1 \cdot n \cdot \sin \alpha_1 = 2 \Delta x_2 \cdot n \cdot \sin \alpha_2$

$$sin(\alpha_1) = \frac{\Delta x_2}{\Delta x_1} sin(\alpha_2)$$

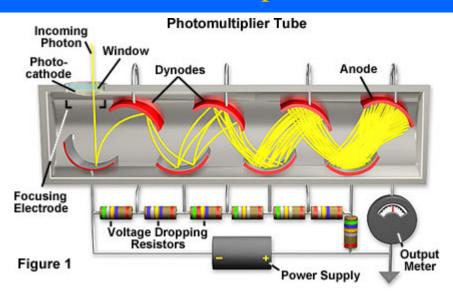
$$sin(\alpha_2) = sin(\varphi + 90^0 - \theta_c)$$

$$sin(\alpha_2) = cos(\varphi - \theta_c) = \sqrt{1 - sin^2(\varphi - \theta_c)}$$

$$sin(\alpha_2) \approx \sqrt{1 - sin^2(\theta_c)}$$
 for small taper angles


$$sin(\alpha_2) \approx \sqrt{1 - \frac{1}{n^2}}$$

then
$$sin(\alpha_1) \approx \frac{\Delta x_2}{\Delta x_1} \sqrt{1 - \frac{1}{n^2}}$$


for $\Delta x_1 = \Delta x_2$ and n=1.5

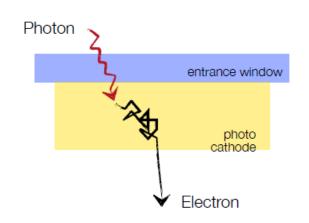
$$sin(\alpha_1) = 0.75$$

There will be some light losses even in the case of equal dimensions

Photomultiplier tube

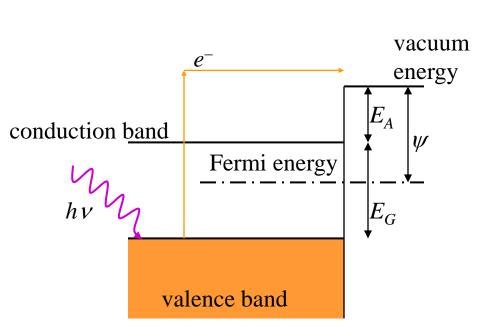
• A photomultiplier tube (phototube, PMT) combines a photocathode and series of dynodes.

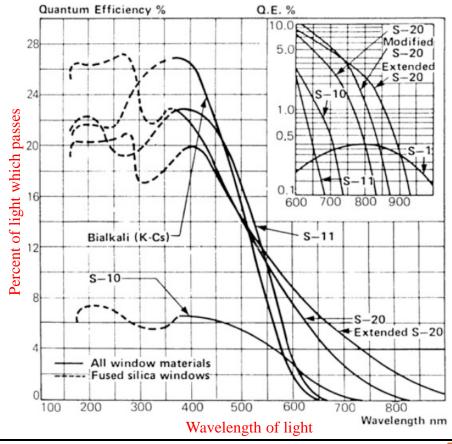
Photocathode: UV detection (alkali compound, Cs-I, Cs-Te), visible light (bialkali compound, Sb-Rb-Cs, Sb-K-Cs), visible light to IR (semiconductors, GaAsP, InGaAs)


Dynodes: Electrons can be multiplied by interaction with surface (emitter: BeO, GaP or metal substrate: Ni, Fe, Cu)

- The high voltage is divided between the dynodes. Dynodes typically operate at around 100 V.
- Output current is measured at the anode.
 - Sometimes at the last dynode

Photomultiplier - Photocathode

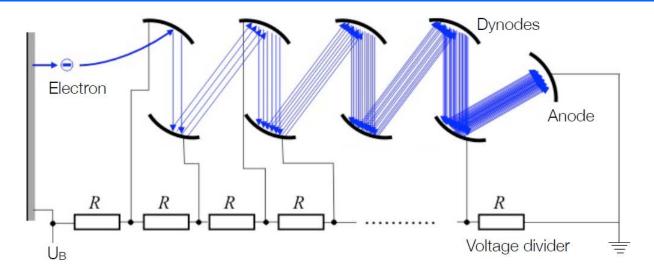



γ -conversion via photoeffect ...

3-step process:

Electron generation via ionization Propagation through cathode Escape of electron into vacuum

Quantum Efficiency Q.E. $\approx 10-30\%$

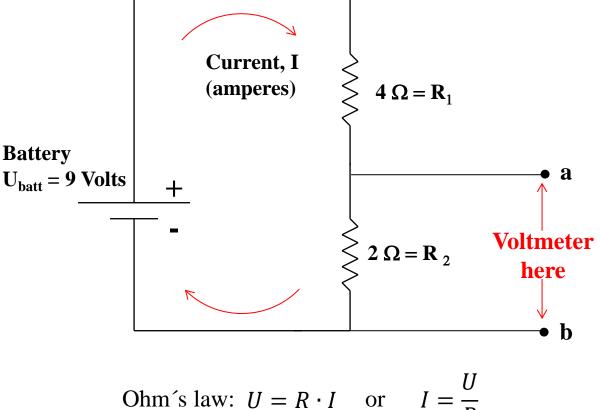


Photomultiplier – Dynode Chain

Multiplication process:

Electrons accelerated towards dynode

Further electrons produced → avalanche


Secondary emission coefficient: $\delta = \#(e\text{-produced}) / \#(e\text{-incoming}) = 2 - 10$

#dynodes $\mathbf{n} = \mathbf{8} - \mathbf{15}$

Gain factor: $G = \delta^n = 10^6 - 10^8$

Voltage divider

Ohm's law:
$$U = R \cdot I$$
 or $I = \frac{U}{R}$
current in circuit: $I = \frac{U_{batt}}{R_1 + R_2} = \frac{9 V}{6 \Omega} = 1.5 A$
 $U_{across R_2} = I \cdot R_2 = 1.5 A \cdot 2 \Omega = 3 V$

The 9 V battery is "divided" in 3 V and 6 V, now accessible with this circuit.

Photomultiplier – Energy Resolution

Energy resolution influenced by:

Linearity of PMT: at high dynode current possible saturation by space charge effects; $I_A \approx n \gamma$ for 3 orders of magnitude possible ...

Photoelectron statistics: given by Poisson statistics.

$$P_n(n_e) = \frac{(n_e)^n \cdot e^{-n_e}}{n!}$$

$$\sigma_n/\langle n\rangle=1/\sqrt{n_e}$$

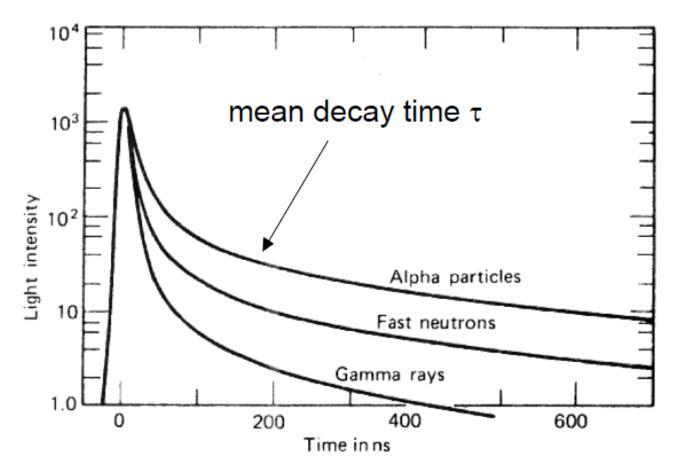
Secondary electron fluctuations:

$$P_n(\delta) = \frac{\delta^n \cdot e^{-\delta}}{n!}$$
$$\sigma_n/\langle n \rangle = 1/\sqrt{\delta}$$

$$\sigma_n/\langle n \rangle = 1/\sqrt{\delta}$$

 n_e is given by dE/dx ...

$$n_e = \frac{dE}{dx} \times \frac{photons}{MeV} \times \eta \times Q.E.$$

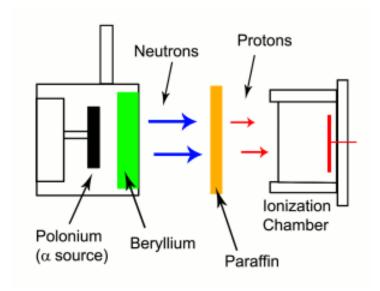

For NaI(Tl) and 10 MeV photon photons/MeV = 40000light collection efficiency $\eta = 0.2$ quantum efficiency Q.E. = 0.25

$$\begin{array}{l} n_e = 20000 \\ \sigma_n \! / \! < \! n \! > \ = 0.7\% \end{array}$$

Pulse shape discrimination

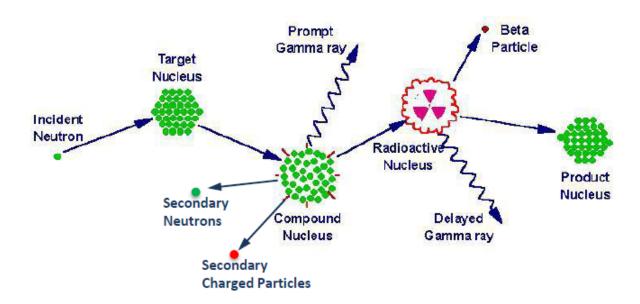
- Pulse shape discrimination (PSD) in organic scintillators are used in particularly liquid scintillators (NE213 / BC501A)
- PSD is due to long-lived decay of scintillator light caused by high dE/dx particle neutron scatter interaction events causing proton recoil

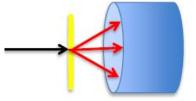
Neutron detectors

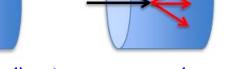

❖ Neutron detectors do **not** detect neutrons but products of neutron interaction!

Possible Existence of a Neutron

It has been shown by Bothe and others that beryllium when bombarded by a-particles of polonium emits a radiation of great penetrating power, which has an absorption coefficient in lead of about 0·3 (cm.)⁻¹. Recently Mme. Curie-Joliot and M. Joliot found, when measuring the ionisation produced by this beryllium radiation in a vessel with a thin window, that the ionisation increased when matter containing hydrogen was placed in front of the window. The


James Chadwick, Nature 132 (1932) 3252


General detection principle


* Neutron detectors do **not** detect neutrons but products of neutron interaction!

Detection of a neutron is a sequential process

- 1. Interaction of the incident neutron: neutron transport
- 2. Transport of secondary particles to or within sensing elements hadron, ion, photon transport
- 3. Primary ionization by secondary particles
- 4. Conversion to optical photons, gas amplification: Transport of electrons and optical photons
- 5. Conversion to electrical signal

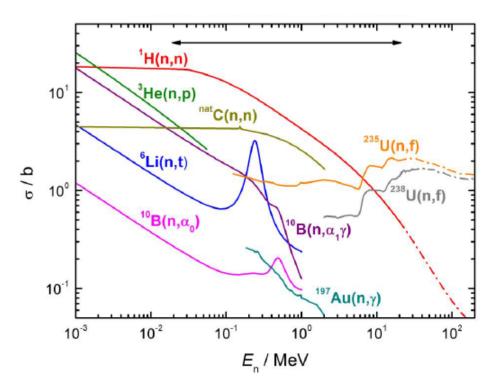
external converter (radiator)

converter = detector

Interaction of neutrons with matter

* Neutron detectors can only be detected after conversion to charged particles or photons:

Elastix scattering: ${}^{A}X(n,n){}^{A}X \rightarrow \text{recoil nucleus } {}^{A}X^{Z+}$


Inelastic scattering: ${}^{A}X(n,n'\gamma){}^{A}X \rightarrow \text{recoil nucleus } {}^{A}X^{Z+}, e^{-}$

Radiative capture: ${}^{A}X(n,\gamma)^{A+1}Y \rightarrow e^{-}$

Neutron emission: ${}^{A}X(n,2n)^{A-1}Y \rightarrow \text{radioactive daughter}$

Charged-particle emission: ${}^{A}X(n,lcp){}^{A'}Y \rightarrow (lcp = p, d, t, \alpha)$, recoil nucleus ${}^{A'}Y^{Z+}$

Fission: $n + {}^{A}X \rightarrow {}^{A1}X_1 + {}^{A2}X_2 + vn \rightarrow fission fragments$

cross section relevant for neutron detection

