Coulomb excitation Hans-Jürgen Wollersheim

Coulomb excitation particle detection

Nuclear excitation by electromagnetic field acting between nuclei.

Coulomb excitation particle detection

Nuclear excitation by electromagnetic field acting between nuclei.

3300

3400

channel number

The inelastic cross section $d\sigma_{inel}/d\Omega_{cm}$ is a direct measure of the E2 matrix elements

H.J. Wollersheim et al., Phys. Lett 48B (1974) 323

Coulomb excitation

particle – γ -ray coincidence measurement

Coulomb excitation

particle – γ -ray coincidence measurement

$$\frac{d^{2}\sigma}{d\Omega_{p}^{lab} d\Omega_{p}^{lab}} = |a_{i \to f}|^{2} \frac{d\sigma_{Ruth}}{d\Omega_{p}^{cm}} \frac{d\Omega_{p}^{cm}}{d\Omega_{p}^{lab}} \cdot \frac{dW(\gamma_{f \to i})}{d\Omega_{\gamma}^{Rest}} \frac{d\Omega_{\gamma}^{Rest}}{d\Omega_{\gamma}^{lab}}$$

$$\frac{d\sigma_{Ruth}}{d\Omega_{p}^{cm}} = \frac{a^{2}}{4} \cdot \sin^{-4} \frac{\theta_{cm}}{2}$$

$$\frac{d\Omega_{p}^{cm}}{d\Omega_{p}^{lab}} = 4 \cdot \cos\theta_{2}$$

$$\frac{dW(\gamma_{f \to i})}{d\Omega_{\gamma}^{Rest}} \cong a_{0} \cdot \left[1 + \frac{a_{2}}{a_{0}}P_{2}(\cos\theta_{\gamma 2}) + \frac{a_{4}}{a_{0}}P_{4}(\cos\theta_{\gamma 2})\right]$$

$$\frac{d\Omega_{\gamma}^{Rest}}{d\Omega_{\gamma}^{lab}} = \left[\frac{E_{\gamma}}{E_{\gamma 0}}\right]^{2}$$

$$\cos\theta_{\gamma 2} = \cos\theta_{\gamma} \cdot \cos\theta_{2} + \sin\theta_{\gamma} \cdot \sin\theta_{2} \cdot \cos(\varphi_{\gamma} - \varphi_{2})$$

Coulomb excitation

particle – γ -ray coincidence measurement

 $12^+ \rightarrow 11^-$

Coulomb excitation at IUAC

 $^{58}Ni \rightarrow ^{122}Sn at 175 MeV$

Clover Ge detector

R. Kumar et al., Phys. Rev. C81, 024306 (2010)

M. Saxena et al., Phys. Rev. C90, 024316 (2014)

Doppler shift correction ⁵⁸Ni + ¹²²Sn at 175 MeV

delay line: inner – outer contact
$$\approx \tan \vartheta$$

 $tan \vartheta = \frac{tan 45^0 - tan 15^0}{ch_2 - ch_1} \cdot (ch - ch_1) + tan 15^0$
 φ -segmentation : 36⁰, 72⁰, 108⁰, etc

⁵⁸Ni projectile measured with PPAC ($^{122}Sn \text{ target excitation}$) index 1 = projectile (^{58}Ni) index 2 = target nucleus (^{122}Sn)

$$v_{cm} = 0.04634 \cdot (1 + A_2/A_1)^{-1} \sqrt{E_{lab}/A_1} \quad (= 0.02594)$$

$$\theta_{cm} = \vartheta_1 + \arcsin\left(\frac{A_1}{A_2}\sin\vartheta_1\right)$$

$$\vartheta_2 = 0.5 \cdot (180^0 - \theta_{cm})$$

$$v_2 = 2 \cdot v_{cm} \cdot \cos\vartheta_2$$

$$\cos\vartheta_{\gamma 2} = \cos\vartheta_{\gamma} \cdot \cos\vartheta_2 - \sin\vartheta_{\gamma} \cdot \sin\vartheta_2 \cdot \cos(\varphi_{\gamma} - \varphi_1)$$

$$\cos(\varphi_{\gamma} - \varphi_1) = \cos\varphi_{\gamma} \cdot \cos\varphi_1 + \sin\varphi_{\gamma} \cdot \sin\varphi_1$$

$$\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - v_2 \cdot \cos \theta_{\gamma 2}}{\sqrt{1 - v_2^2}}$$

Doppler shift correction ⁵⁸Ni + ¹²²Sn at 175 MeV

Doppler shift correction ²⁰⁸Pb + ¹⁶⁴Dy at 978 MeV

Conversion electrons

Energetics of CE-decay (i=K, L, M,....) $E_i = E_f + E_{ce,i} + E_{BE,i}$ γ - and CE-decays are independent; transition probability ($\lambda \sim$ Intensity) $\lambda_T = \lambda_{\gamma} + \lambda_{CE} = \lambda_{\gamma} + \lambda_K + \lambda_L + \lambda_M$ Conversion coefficient $a_i = \lambda_{CE,i} / \lambda_{\gamma}$

The reorientation effect

Shape coexistence in ⁷⁴Kr

