Peripheral collisions

Hans-Jürgen Wollersheim

* probing single particle aspects and nucleon-nucleon correlations
* transition from quasi elastic to deep inelastic processes
* connection with other reaction channels (near and sub-barrier fusion)
* population of neutron-rich nuclei

Peripheral collisions

Hans-Jürgen Wollersheim

Multi-nucleon transfer
study of secondary processes

$$
\mathrm{C}_{\mathrm{p}}=4.2 \mathrm{fm}, \mathrm{C}_{\mathrm{t}}=5.5 \mathrm{fm}, \mathrm{R}_{\mathrm{int}}=12.7 \mathrm{fm}
$$

Reaction Q-value

Consider the $T(p, x) R$ reaction:
The Q-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.
$Q_{g g}=\left[m_{p}+m_{t}-\left(m_{x}+m_{R}\right)\right] \cdot c^{2}$
if Q is positive, the reaction is exoergic while if Q is negative, the reaction is endoergic.

https://www.nndc.bnl.gov/qcalc/
$m_{p} c^{2}+T_{p}+m_{t} c^{2}=m_{x} c^{2}+T_{x}+m_{R} c^{2}+T_{R}$
$Q_{g g}=\left[m_{p}+m_{t}-m_{x}-m_{R}\right] c^{2}=T_{x}+T_{R}-T_{p}$

FGilir ©

Reaction Q-value

Consider the $T(p, x) R$ reaction:
The Q-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.
$Q_{g g}=\left[m_{p}+m_{t}-\left(m_{x}+m_{R}\right)\right] \cdot c^{2}$
if Q is positive, the reaction is exoergic while is Q is negative, the reaction is endoergic.

Reaction Q-value

neutron transfer

Consider the $\mathrm{T}(\mathrm{p}, \mathrm{x}) \mathrm{R}$ reaction:
The Q-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.

$$
Q_{g g}=\left[m_{p}+m_{t}-\left(m_{x}+m_{R}\right)\right] \cdot c^{2}
$$

if Q is positive, the reaction is exoergic while is Q is negative, the reaction is endoergic.

$\left({ }^{60} \mathrm{Ni},{ }^{58} \mathrm{Ni}\right)$ -2 n	$\left({ }^{60} \mathrm{Ni},{ }^{59} \mathrm{Ni}\right)$ -1 n	$\left.{ }^{60} \mathrm{Ni},{ }^{60} \mathrm{Ni}\right)$ 0 n	$\left({ }^{60} \mathrm{Ni},{ }^{61} \mathrm{Ni}\right)$ +1 n	$\left({ }^{60} \mathrm{Ni},{ }^{62} \mathrm{Ni}\right)$ +2 n	$\left({ }^{60} \mathrm{Ni},{ }^{63} \mathrm{Ni}\right)$ +3 n	$\left({ }^{60} \mathrm{Ni},{ }^{64} \mathrm{Ni}\right)$ +4 n
$-4,12 \mathrm{MeV}$	-4.44 MeV	0 MeV	-1.74 MeV	+1.31 MeV	-2.15 MeV	-0.24 MeV

Reaction Q-value

proton transfer

Consider the $T(p, x) R$ reaction:
The Q-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.
$Q_{g g}=\left[m_{p}+m_{t}-\left(m_{x}+m_{R}\right)\right] \cdot c^{2}$
if Q is positive, the reaction is exoergic while is Q is negative, the reaction is endoergic.

The Q-value of the reaction will change for proton transfer
 due to the rearrangement of nuclear charge.
$Q_{o p t}=Q_{g g}-E^{*}=Q_{g g}-e^{2}\left[\frac{Z_{p} Z_{t}}{r_{i}}-\frac{\left(Z_{p}-z\right)\left(Z_{t}+z\right)}{r_{f}}\right]$
$Q_{o p t}=Q_{g g}-\frac{Z_{p} Z_{t} e^{2}}{r_{i}} \cdot\left[1-\frac{\left(Z_{p}-z\right)\left(Z_{t}+z\right)}{Z_{p} Z_{t}} \frac{r_{i}}{r_{f}}\right] \quad r_{i}=D=\frac{0.72 \cdot Z_{1} Z_{2}}{E_{c m}}\left[\sin ^{-1} \frac{\theta_{c m}}{2}+1\right]$
$Q_{o p t}=Q_{g g}-\frac{2 E_{c m}}{\left[\sin ^{-1} \frac{\theta_{c m}}{2}+1\right]} \cdot\left[1-\frac{\left(Z_{p}-z\right)\left(Z_{t}+z\right)}{Z_{p} Z_{t}} \frac{r_{i}}{r_{f}}\right]$
$Q_{o p t} \approx Q_{g g}-E_{c m} \cdot\left[1-\frac{\left(Z_{p}-z\right)\left(Z_{t}+z\right)}{Z_{p} Z_{t}}\right]$

Reaction Q-value

The population in the (N, Z) plane is governed by $\mathrm{Q}_{\mathrm{opt}}$

$\mathrm{E}_{\mathrm{cm}}=197 \mathrm{MeV} \quad \mathrm{V}_{\mathrm{C}}\left(\mathrm{R}_{\mathrm{int}}\right)=178 \mathrm{MeV}$

Reaction Q-value

The population in the (N, Z) plane is governed by $\mathrm{Q}_{\mathrm{opt}}$

Reaction Q-value

The population in the (N, Z) plane is governed by $\mathrm{Q}_{\mathrm{opt}}$
$500 \quad 600 \quad 700$
M [Channels]

800	E*	-2n	-1n	On	1n	2n	3n	4 n	$5 n$	$6 n$	7 n	8n
${ }_{22} \mathrm{Ti}$	-14.4	-47.7	-37.4	-23.0	-17.2	-6.3	-3.9	+3.5	+4.9	+10.5	+10.8	+15.4
${ }_{21} \mathrm{Sc}$	-7.3	0.0	-25.9	-13.2	-8.3	-2.4	+0.1	+4.9	+6.1	+10.1	+10.3	+13.8
${ }_{20} \mathrm{Ca}$	0	-20.4	-12.0		+1.3	+6.2	+6.4	+11.1	+10.3	+14.0	+12.8	+15.9
${ }_{19} \mathrm{~K}$	+7.6	-13.9	-6.7	+2.1	+2.6	+6.1	+5.9	+8.7	+7.8	+9.6	+7.9	$+9.0$
${ }_{18} \mathrm{Ar}$	+15.4	-3.2	-0.1	+7.5	+6.6	+9.8	+7.8	+10.4	+7.5	+8.9	+5.5	+6.4
${ }_{17} \mathrm{Cl}$	+23.4	-1.1	+1.6	+7.2	+5.9	+7.0	+4.6	+5.4	+2.6	+2.3	-2.7	-3.1
${ }_{16} \mathrm{~S}$	+31.7	+4.8	+5.3	+10.4	+7.0	+8.1	+3.9	+4.6	-0.5	-1.1	-7.0	-8.1
${ }_{15} \mathrm{P}$	+40.3	+4.1	+3.8	+7.0	+2.6	+2.2	-2.9	-4.0	-9.2	-12.2	-18.5	-21.4
${ }_{14} \mathrm{Si}$	+49.0	+6.6	+4.1	$+6.2$	+0.6	-0.6	-7.2	-9.4	-16.5	-19.4	-27.4	-30.4

$\mathrm{E}_{\mathrm{cm}} \cdot\left[1-\mathrm{V}_{\mathrm{C}}(\mathrm{f}) / \mathrm{V}_{\mathrm{C}}(\mathrm{i})\right](\mathrm{MeV}) \quad \mathrm{Q}_{\mathrm{gg}}-\left[\mathrm{V}_{\mathrm{C}}(\mathrm{i})-\mathrm{V}_{\mathrm{C}}(\mathrm{f})\right](\mathrm{MeV})$

Sub-barrier transfer reactions

A smooth transition between quasi-elastic and deep inelastic processes

Below the barrier Q-values gets very narrow and without deep inelastic components

From quasi-elastic to deep-inelastic regime

${ }^{90} \mathrm{Zr}+{ }^{208} \mathrm{~Pb}$ at $\mathrm{E}=560 \mathrm{MeV}$ (PRISMA)

Sub-barrier transfer reactions

${ }^{60} \mathrm{Ni}\left({ }^{116} \mathrm{Sn},{ }^{114} \mathrm{Sn}\right){ }^{62} \mathrm{Ni} \mathrm{Q} \mathrm{g}_{\mathrm{gg}}=+1.3 \mathrm{MeV}$
slopes of P_{tr} versus D are expected from the binding energy

$$
\frac{P_{t r}}{\sin \left(\theta_{c m} / 2\right)} \propto \exp (-2 \alpha \cdot D) \quad \alpha=\sqrt{\frac{2 \mu B}{\hbar^{2}}}
$$

$B \rightarrow$ binding energy

$$
\alpha_{x n}\left[\mathrm{fm}^{-1}\right]=0.21874 \sqrt{x \cdot B_{M e V}}
$$

one probes tunneling effects between interacting nuclei, which enter into contact through the tail of their density distributions

$$
D=\frac{Z_{1} Z_{2} e^{2}}{2 E_{c m}} \cdot\left(1+\sin ^{-1}\left(\theta_{c m} / 2\right)\right)
$$

Transfer studies at energies below the Coulomb barrier

\checkmark only a few reaction channels are open
one reduces uncertainties with nuclear potentials
\checkmark Q-value distributions get much narrower one can probe nucleon correlations close to the ground state
but

1. angular distributions are backward peaked
projectile-like particles have low kinetic energy
2. a complete identification of final reaction products in A, Z and Q -values becomes difficult
3. cross sections get very small (need for high efficiency)
solutions:

- use Recoil Mass Separator
- use Magnetic Spectrometers with inverse kinematics

Energy acceptance $\sim \pm 20 \%$
FGilỉ Esin

Prisma spectrometer

- About 80 msr acceptance
- Position sensitive detector systems
- Time of flight measurements
- Trajectory reconstruction
- Up to nuclei with $A \approx 140$

Heavy Ion Reaction Analyzer (HIRA)

${ }^{28} \mathrm{Si} \rightarrow{ }^{90,94} \mathrm{Zr} @ \mathrm{E}_{\mathrm{lab}}=83.3,86.4,89.5,92.5,95.5 \mathrm{MeV}$
${ }^{28} \mathrm{Si} \rightarrow{ }^{90} \mathrm{Zr} @ \mathrm{E}_{\mathrm{cm}}=63.5,65.9,68.3,70.6,72.8 \mathrm{MeV} \quad \mathrm{V}_{\mathrm{C}}=71.5 \mathrm{MeV}$
${ }^{28} \mathrm{Si} \rightarrow{ }^{9} \mathrm{Zr} @ \mathrm{E}_{\mathrm{cm}}=64.2,66.6,69.0,71.3,73.6 \mathrm{MeV} \quad \mathrm{V}_{\mathrm{C}}=71.1 \mathrm{MeV}$
FAifi E Ein
S. Kalkal et al., Phys. Rev. C83 (2011) 054607

Why should we measure sub-barrier transfer?

Transfer reactions with weakly bound nuclei

${ }^{7} \mathbf{L i}+{ }^{209} \mathbf{B i}$
${ }^{7} \mathrm{Li}$

$\left({ }^{7} \mathrm{Li},{ }^{5} \mathrm{Li}\right)$ -2 n	$\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right)$ -1 n	$\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right)$ +1 n	$\left({ }^{7} \mathrm{Li},{ }^{9} \mathrm{Li}\right)$ +2 n	$\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right)$ -1 p	$\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Be}\right)$ +1 p
-3.18 MeV	-2.65 MeV	-5.43 MeV	-8.25 MeV	-4.99 MeV	$+\mathbf{1 3 . 4 6 ~ M e V}$

${ }^{5} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H}$	${ }^{6} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}^{+}{ }^{2} \mathrm{H}$				${ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
+1.965 MeV	-1.474 MeV				+0.092 MeV

Structure and thresholds

D. R. Tilley et al., Nucl. Phys. A490, 3 (1988)

Structure and thresholds

What causes the reduction in fusion?

${ }^{7} \mathrm{Li}$

breakup threshold energy:
$\mathrm{Q}_{\text {breakup }}=-2.467 \mathrm{MeV}$

What causes the reduction in fusion?

${ }^{7} \mathrm{Li}$
${ }^{4} \mathrm{He}$
breakup threshold energy:
$\mathrm{Q}_{\text {breakup }}=-2.467 \mathrm{MeV}$

Fusion of weakly bound ${ }^{7} \mathbf{L i}+{ }^{209} \mathbf{B i}$ suppressed relative to single-barrier calculation in contrast to ${ }^{18} \mathrm{O}+{ }^{198} \mathbf{P t}$

Front

Back
> 60° wedge detectors Micron semiconductor Ltd
$>$ Large angular coverage (0.83π sr)
> Detectors with high pixellation (512 pixels)

FGifir Esii

Reconstruction of Q-value

non-relativistic implementation

1. energy conservation:

$$
Q=\left(E_{1}+E_{2}+E_{\text {recoil }}\right)-E_{\text {beasured }}^{\substack{\text { from momentum } \\ \text { conservation }}}
$$

2. momentum conservation (3-body breakup)

$$
\begin{aligned}
\vec{P}_{\text {beam }} & =\vec{P}_{1}+\vec{P}_{2}+\vec{P}_{\text {recoil }} \\
E_{\text {recoil }} & =\frac{\left|\vec{P}_{\text {recoil }}\right|^{2}}{2 \cdot m_{\text {recoil }}}
\end{aligned}
$$

Q-value spectrum (target states)

${ }^{7} \mathbf{L i}+{ }^{209} \mathbf{B i}$

${ }^{208} \mathrm{~Pb}$ ground state

$$
\mathrm{E}_{\mathrm{CM}} / \mathrm{V}_{\mathrm{B}}=0.94
$$

$$
\begin{array}{rlrl}
{ }^{7} \mathrm{Li}+{ }^{209} \mathrm{Bi} & \rightarrow{ }^{8} \mathrm{Be}+{ }^{208} \mathrm{~Pb} & \mathrm{Q}_{\mathrm{gg}}=13.457 \mathrm{MeV} \\
& \rightarrow{ }^{5} \mathrm{Li}+{ }^{211} \mathrm{Bi} \quad \mathrm{Q}_{\mathrm{gg}}=-3.175 \mathrm{MeV} \\
& \rightarrow{ }^{6} \mathrm{Li}+{ }^{210} \mathrm{Bi} \quad \mathrm{Q}_{\mathrm{gg}}=-2.645 \mathrm{MeV}
\end{array}
$$

${ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \quad \mathrm{Q}_{\mathrm{gg}}=+0.092 \mathrm{MeV}$
$\begin{aligned}{ }^{5} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H} & \mathrm{Q}_{\mathrm{gg}}=+1.965 \mathrm{MeV} \\ { }^{6} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{+} \mathrm{H} & \mathrm{Q}^{2}=-1.474 \mathrm{MeV}\end{aligned}$
FGilíR Esii

Q-value spectrum (target states)

${ }^{7} \mathbf{L i}+{ }^{208} \mathbf{P b}$

$$
\mathrm{E}_{\mathrm{CM}} / \mathrm{V}_{\mathrm{B}}=0.95
$$

$$
\begin{array}{rlr|ll}
{ }^{7} \mathrm{Li}+{ }^{208} \mathrm{~Pb} & \rightarrow{ }^{8} \mathrm{Be}+{ }^{207} \mathrm{Tl} & \mathrm{Q}_{\mathrm{gg}}= & 9.246 \mathrm{MeV} & { }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
\end{array} \mathrm{Q}_{\mathrm{gg}}=+0.092 \mathrm{MeV},
$$

Q-value spectrum (target states)

${ }^{7} \mathbf{L i}+{ }^{207} \mathbf{P b}$

$\mathrm{E}_{\mathrm{CM}} / \mathrm{V}_{\mathrm{B}}=0.95$

$$
\begin{aligned}
& { }^{7} \mathrm{Li}+{ }^{207} \mathrm{~Pb} \rightarrow{ }^{8} \mathrm{Be}+{ }^{206} \mathrm{Tl} \quad \mathrm{Q}_{\mathrm{gg}}=9.766 \mathrm{MeV} \quad{ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \quad \mathrm{Q}_{\mathrm{gg}}=+0.092 \mathrm{MeV} \\
& \begin{array}{ll|ll}
\rightarrow{ }^{5} \mathrm{Li}+{ }^{209} \mathrm{~Pb} & \mathrm{Q}_{\mathrm{gg}}=-1.610 \mathrm{MeV} & { }^{5} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H} & \mathrm{Q}_{\mathrm{gg}}=+1.965 \mathrm{MeV} \\
\rightarrow{ }^{6} \mathrm{Li}+{ }^{208} \mathrm{~Pb} & \mathrm{Q}_{\mathrm{gg}}= & 0.118 \mathrm{MeV} & { }^{6} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{2} \mathrm{H}
\end{array} \mathrm{Q}_{\mathrm{gg}}=-1.474 \mathrm{MeV}
\end{aligned}
$$

FGilip E=ii

Reactions with halo nuclei

stable nuclei

dripline nuclei

Reactions with halo nuclei

Momentum distribution of ${ }^{11} \mathrm{Li}$

${ }^{6} \mathrm{He}$ distribution from ${ }^{8} \mathrm{He}$

${ }^{9} \mathrm{Li}$ distribution from ${ }^{11} \mathrm{Li}$ (very narrow!)
uncertainty principle

$$
\underset{\text { small }}{\rightarrow \text { large }}
$$

$$
{ }^{11} \mathrm{Li}+\mathrm{C} \rightarrow{ }^{9} \mathrm{Li}+\mathrm{X} \text { at } 800 \mathrm{AMeV}
$$

