Peripheral collisions Hans-Jürgen Wollersheim

- probing single particle aspects and nucleon-nucleon correlations
- transition from quasi elastic to deep inelastic processes
- connection with other reaction channels (near and sub-barrier fusion)
- population of neutron-rich nuclei

Peripheral collisions Hans-Jürgen Wollersheim

Sub-barrier transfer reactions study of nucleon-nucleon correlations

Multi-nucleon transfer study of secondary processes

 $C_p = 4.2 \text{ fm}, C_t = 5.5 \text{ fm}, R_{int} = 12.7 \text{ fm}$

Reaction Q-value

Consider the T(p,x)R reaction:

The *Q*-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.

 $Q_{gg} = \left[m_p + m_t - (m_x + m_R)\right] \cdot c^2$

if Q is positive, the reaction is **exoergic** while if Q is negative, the reaction is **endoergic**.

https://www.nndc.bnl.gov/qcalc/

$$m_p c^2 + T_p + m_t c^2 = m_x c^2 + T_x + m_R c^2 + T_R$$
$$Q_{gg} = [m_p + m_t - m_x - m_R]c^2 = T_x + T_R - T_p$$

Reaction Q-value

Consider the T(p,x)R reaction:

The *Q*-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.

 $Q_{gg} = \left[m_p + m_t - (m_x + m_R)\right] \cdot c^2$

if Q is positive, the reaction is **exoergic** while is Q is negative, the reaction is **endoergic**.

Reaction Q-value neutron transfer

Consider the T(p,x)R reaction:

The *Q*-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.

 $Q_{gg} = \left[m_p + m_t - (m_x + m_R)\right] \cdot c^2$

if Q is positive, the reaction is **exoergic** while is Q is negative, the reaction is **endoergic**.

 116 Sn $\rightarrow {}^{60}$ Ni @ E_{lab} = 430, 460, 500 MeV E_{cm} = 147, 156, 170 MeV

		$V_{c}(R_{c}) = 159 \text{ MeV}$
--	--	----------------------------------

(⁶⁰ Ni, ⁵⁸ Ni)	(⁶⁰ Ni, ⁵⁹ Ni)	(⁶⁰ Ni, ⁶⁰ Ni)	(⁶⁰ Ni, ⁶¹ Ni)	(⁶⁰ Ni, ⁶² Ni)	(⁶⁰ Ni, ⁶³ Ni)	(⁶⁰ Ni, ⁶⁴ Ni)
-2n	-1n	0n	+1n	+2n	+3n	+4n
-4,12 MeV	-4.44 MeV	0 MeV	-1.74 MeV	+1.31 MeV	-2.15 MeV	-0.24 MeV

Reaction Q-value proton transfer

Consider the T(p,x)R reaction:

The *Q*-value of the reaction is defined as the difference in mass energies of the products and reactants, i.e.

 $Q_{gg} = \left[m_p + m_t - (m_x + m_R)\right] \cdot c^2$

if Q is positive, the reaction is **exoergic** while is Q is negative, the reaction is **endoergic**.

The Q-value of the reaction will change for **proton transfer** due to the rearrangement of nuclear charge.

$$\begin{aligned} Q_{opt} &= Q_{gg} - E^* = Q_{gg} - e^2 \left[\frac{Z_p Z_t}{r_i} - \frac{(Z_p - z)(Z_t + z)}{r_f} \right] \\ Q_{opt} &= Q_{gg} - \frac{Z_p Z_t e^2}{r_i} \cdot \left[1 - \frac{(Z_p - z)(Z_t + z)}{Z_p Z_t} \frac{r_i}{r_f} \right] \qquad r_i = D = \frac{0.72 \cdot Z_1 Z_2}{E_{cm}} \left[\sin^{-1} \frac{\theta_{cm}}{2} + 1 \right] \\ Q_{opt} &= Q_{gg} - \frac{2E_{cm}}{\left[\sin^{-1} \frac{\theta_{cm}}{2} + 1 \right]} \cdot \left[1 - \frac{(Z_p - z)(Z_t + z)}{Z_p Z_t} \frac{r_i}{r_f} \right] \\ Q_{opt} &\approx Q_{gg} - E_{cm} \cdot \left[1 - \frac{(Z_p - z)(Z_t + z)}{Z_p Z_t} \right] \end{aligned}$$

Reaction Q-value

The population in the (N,Z) plane is governed by Q_{opt}

Z [Channels]

Reaction Q-value

Q_{gg} (MeV)

 $[V_{C}(i)-V_{C}(f)]$ (MeV)

GSĬ

F(AIŘ

The population in the (N,Z) plane is governed by Q_{opt}

600

M [Channels]

Reaction Q-value

The population in the (N,Z) plane is governed by Q_{opt}

700 els]	800	E^*	-2n	-1n	0n	1n	2n	3n	4n	5n	бп	7n	8n
	₂₂ Ti	-14.4	-47.7	-37.4	-23.0	-17.2	-6.3	-3.9	+3.5	+4.9	+10.5	+10.8	+15.4
	₂₁ Sc	-7.3	0.0	-25.9	-13.2	-8.3	-2.4	+0.1	+4.9	+6.1	+10.1	+10.3	+13.8
	₂₀ Ca	0	-20.4	-12.0	0	+1.3	+6.2	+6.4	+11.1	+10.3	+14.0	+12.8	+15.9
	₁₉ K	+7.6	-13.9	-6.7	+2.1	+2.6	+6.1	+5.9	+8.7	+7.8	+9.6	+7.9	+9.0
	18Ar	+15.4	-3.2	-0.1	+7.5	+6.6	+9.8	+7.8	+10.4	+7.5	+8.9	+5.5	+6.4
	17Cl	+23.4	-1.1	+1.6	+7.2	+5.9	+7.0	+4.6	+5.4	+2.6	+2.3	-2.7	-3.1
	₁₆ S	+31.7	+4.8	+5.3	+10.4	+7.0	+8.1	+3.9	+4.6	-0.5	-1.1	-7.0	-8.1
	₁₅ P	+40.3	+4.1	+3.8	+7.0	+2.6	+2.2	-2.9	-4.0	-9.2	-12.2	-18.5	-21.4
	14Si	+49.0	+6.6	+4.1	+6.2	+0.6	-0.6	-7.2	-9.4	-16.5	-19.4	-27.4	-30.4

 $E_{cm} \cdot [1-V_C(f)/V_C(i)] (MeV)$

 $Q_{gg} - [V_C(i)-V_C(f)] (MeV)$

500

Sub-barrier transfer reactions

A smooth transition between quasi-elastic and deep inelastic processes

Below the barrier Q-values gets very narrow and without deep inelastic components

From quasi-elastic to deep-inelastic regime ⁹⁰Zr + ²⁰⁸Pb at E = 560 MeV (PRISMA)

F(4İR 🤣 🖬 🖬 🕯

 $E_{cm}/V_{C}(R_{int}) = 1.19$

Sub-barrier transfer reactions

 60 Ni(116 Sn, 114 Sn) 62 Ni Q_{gg} = +1.3 MeV

slopes of P_{tr} versus D are expected from the binding energy

$$\frac{P_{tr}}{sin(\theta_{cm}/2)} \propto exp(-2\alpha \cdot D) \qquad \alpha = \sqrt{\frac{2\mu B}{\hbar^2}}$$
B \rightarrow binding energy $\alpha_{xn}[fm^{-1}] = 0.21874\sqrt{x \cdot B_{MeV}}$

one probes tunneling effects between interacting nuclei, which enter into contact through the tail of their density distributions

$$D = \frac{Z_1 Z_2 e^2}{2E_{cm}} \cdot \left(1 + \sin^{-1}(\theta_{cm}/2)\right)$$

D. Montanari et al.; Phys. Rev. Lett 113, 052501 (2014)

Transfer studies at energies below the Coulomb barrie

- only a few reaction channels are open one reduces uncertainties with nuclear potentials
- Q-value distributions get much narrower one can probe nucleon correlations close to the ground state

but

- 1. angular distributions are backward peaked projectile-like particles have low kinetic energy
- 2. a complete identification of final reaction products in A,Z and Q-values becomes difficult
- 3. cross sections get very small (need for high efficiency)

solutions:

- use Recoil Mass Separator
- use Magnetic Spectrometers with inverse kinematics

Prisma spectrometer

Prisma spectrometer

Heavy Ion Reaction Analyzer (HIRA)

${}^{28}\text{Si} \rightarrow {}^{90,94}\text{Zr} @ \text{E}_{\text{lab}} = 83.3, 86.4, 89.5, 92.5, 95.5 \text{ MeV}$

 ${}^{28}\text{Si} \rightarrow {}^{90}\text{Zr} @ \text{E}_{cm} = 63.5, 65.9, 68.3, 70.6, 72.8 \text{ MeV} \quad \text{V}_{\text{C}} = 71.5 \text{ MeV}$ ${}^{28}\text{Si} \rightarrow {}^{94}\text{Zr} @ \text{E}_{cm} = 64.2, 66.6, 69.0, 71.3, 73.6 \text{ MeV} \quad \text{V}_{\text{C}} = 71.1 \text{ MeV}$

Why should we measure sub-barrier transfer?

one probes transfer and fusion in an overlapping region of energies and angular momenta

Transfer reactions with weakly bound nuclei

 ${}^{7}\text{Li} + {}^{209}\text{Bi}$

(⁷ Li, ⁵ Li)	(⁷ Li, ⁶ Li)	(⁷ Li, ⁸ Li)	(⁷ Li, ⁹ Li)	(⁷ Li, ⁶ He)	(⁷ Li, ⁸ Be)
-2n	-1n	+1n	+2n	-1p	+1p
-3.18 MeV	-2.65 MeV	-5.43 MeV	-8.25 MeV	-4.99 MeV	+13.46 MeV

⁵ Li→ ⁴ He+ ¹ H	⁶ Li→ ⁴ He+ ² H		⁸ Be→ ⁴ He+ ⁴ He
+1.965 MeV	-1.474 MeV		+0.092 MeV

Structure and thresholds

D. R. Tilley et al., Nucl. Phys. A490, 3 (1988)

Structure and thresholds

What causes the reduction in fusion?

What causes the reduction in fusion?

⁷Li

breakup threshold energy: $Q_{breakup} = -2.467 \text{ MeV}$

Fusion of weakly bound ${}^{7}Li + {}^{209}Bi$ suppressed relative to single-barrier calculation in contrast to ${}^{18}O + {}^{198}Pt$

- 60⁰ wedge detectors Micron semiconductor Ltd
- > Large angular coverage $(0.83 \pi \text{ sr})$
- Detectors with high pixellation (512 pixels)

Reconstruction of Q-value

non-relativistic implementation

$$\vec{P}_{beam} = \vec{P}_1 + \vec{P}_2 + \vec{P}_{recoil}$$
$$E_{recoil} = \frac{\left|\vec{P}_{recoil}\right|^2}{2 \cdot m_{recoil}}$$

Q-value spectrum (target states)

Q-value spectrum (target states)

Q-value spectrum (target states)

Reactions with halo nuclei

Reactions with halo nuclei

wider distribution is similar to Goldhaber model