Fusion Reactions Hans-Jürgen Wollersheim

Hot fusion (~1952) successful up to element 106 (Seaborgium)

Coulomb barrier V_C between projectile and target nucleus has to be exceeded

$$V_{C} = \frac{Z_{p} \cdot Z_{t} \cdot e^{2}}{R_{int}} = 126.2 \, MeV \quad \left({}^{26}Mg + {}^{248}Cm\right)$$

 $\blacktriangleright \quad \text{reaction: } a + A \rightarrow C^* \rightarrow B + b$

 $\Delta m = m_a + m_A$ - m_{CN}

 $\Delta m = (25.983 + 248.072 - 274.143) * 931.478 \text{ MeV/c}^2$ $= -82.153 \text{ MeV/c}^2$

- excitation energy of compound nucleus
 - $E^* = E_{kin} + \Delta m \cdot c^2$
 - = 126.2 MeV 82.2 MeV
 - = 44.0 MeV
- approximate 4 neutrons will be evaporated to avoid fission

"Hot Fusion"

Cold fusion (1981-1996)

https://www.nndc.bnl.gov/qcalc/

Coulomb barrier V_C between projectile and target nucleus has to be exceeded

$$V_{C} = \frac{Z_{p} \cdot Z_{t} \cdot e^{2}}{R_{int}} = 223.3 \, MeV \quad \left({}^{58}Fe + {}^{208}Pb\right)$$

 $\succ \quad \text{reaction: } a + A \rightarrow C^* \rightarrow B + b$

 $\Delta m = m_a + m_A$ - m_{CN}

- $\Delta m = (57.933 + 207.977 266.130) * 931.478 \text{ MeV/c}^2$ $= -205.092 \text{ MeV/c}^2$
- excitation energy of compound nucleus
 - $E^* = E_{kin} + \Delta m \cdot c^2$
 - = 223.3 MeV 205.1 MeV
 - = **18.2 MeV**
- > approximate 1-2 neutrons will be evaporated to avoid fission

Fusion cross section

Radius for fusion barrier:

$$R_{fusion} = R_{int} - \begin{cases} 0.3117 \cdot (Z_p \cdot Z_t)^{0.2122} & Z_p \cdot Z_t < 500 \\ 1.096 + 1.391 \cdot Z_p \cdot Z_t / 1000 & Z_p \cdot Z_t \ge 500 \end{cases} \quad [fm]$$

	R _i [fm]	C _i [fm]	R _{int} [fm]	V _C (R _{int}) [MeV]	R _{fusion} [fm]	V _C (R _{fusion}) [MeV]
⁵⁸ Fe	4.40	4.17	13.75	223.3	12.36	248.4
²⁰⁸ Pb	6.96	6.82				

Total cross section for fusion:

$$\sigma_{fusion} = \pi R_{fusion}^2 \cdot \left[1 - \frac{V_C(R_{fusion})}{E_{cm}} \right]$$

$$\sigma_{fusion} = \frac{\pi}{k_{\infty}^2} \cdot \ell_{fusion} \cdot \left(\ell_{fusion} + 1\right)$$

with
$$E_{cm} = \frac{A_t}{A_t + A_p} \cdot E_{lab}$$

with
$$k_{\infty} = 0.2187 \cdot \frac{A_t}{A_t + A_p} \cdot \sqrt{A_p \cdot E_{lab}} \quad [fm^{-1}]$$

Interaction potential

The potential between projectile and target nucleus is given by a function of the relative distance between them

 $V(r) = V_N(r) + V_C(r)$

nuclear potential + Coulomb potential

$$V_{C}(r) = \begin{cases} \frac{Z_{1}Z_{2}e^{2}}{2 \cdot R_{C}} \left(3 - \frac{r^{2}}{R_{C}^{2}}\right) & r < R_{C} \\ \frac{Z_{1}Z_{2}e^{2}}{r} & r \ge R_{C} \end{cases}$$

$$V_N(r) = 4\pi \cdot \gamma \cdot \frac{C_p \cdot C_t}{C_p + C_t} \cdot b \cdot \Phi(\xi)$$

$$\Phi(\xi) = \begin{cases} -0.5 \cdot (\xi - 2.54)^2 - 0.0852 \cdot (\xi - 2.54)^3 & \xi \le 1.2511 \\ -3.437 \cdot exp(-\xi/0.75) & \xi \ge 1.2511 \end{cases}$$

$$\xi = (r - C_p - C_t)/b$$

$$b = \frac{\pi}{\sqrt{3}} \cdot a \ge 1 \, fm \quad with \, a = 0.55 \, fm$$

$$\gamma = 0.9517 \cdot \left\{ 1 - 1.7826 \cdot \left(\frac{N_c - Z_c}{A_c}\right)^2 \right\} \quad \frac{MeV}{fm^2}$$

$$C_i = R_i \cdot (1 - R_i^{-2})$$
 [fm] $R_i = 1.28 \cdot A_i^{1/3} - 0.76 + 0.8 \cdot A_i^{-1/3}$ [fm]

The Statistical Model

de-excitation of the hot compound system

Evaporation particles

Typical energy spectrum of nucleons emitted at a fixed angle in inelastic nucleon-nucleon reactions.

cm-spectra of particles statistically emitted from CN (evaporation) are of Maxwell Boltzmann type

$$\frac{dN}{dE} \propto (E - E_B) \cdot e^{-E/T}$$

 E_B = Coulomb barrier T = effective nuclear temperature

Evaporation particles

cm-spectra of particles statistically emitted from CN (evaporation) are of Maxwell Boltzmann type

$$\frac{dN}{dE} \propto (E - E_B) \cdot e^{-E/T}$$

 E_B = Coulomb barrier T = effective nuclear temperature

Even for fixed E^* the particle spectrum is continuous (Maxwell Boltzmann), except for transitions to discrete spectrum at low E_{ER}^*

Nuclear temperatures and level densities

de-excitation of the hot compound system

deviations at shell closures

collective states

ground state

Fusion excitation functions

maximum ℓ_{fusion} due to nuclear centrifugal stability

Reduction in fusion at above barrier energies

A limiting nuclear angular momentum rotating charged liquid drop

Fusion and evaporation cold fusion

$$K_0 = \hbar^2 / 2 \cdot m \cdot r_0^2 \approx 11.4 MeV$$
 $T = \sqrt{8 \cdot E^* / A_{CN}}$

Both decay processes are determined by the level density, either from the residual nucleus or at the saddle point.

level density: $\rho(E^*) = const \cdot \exp(E^*/T)$

$$\frac{\Gamma_n}{\Gamma_f} = \frac{2 \cdot T \cdot A_{CN}^{2/3}}{K_0} \cdot \exp\left[\left(B_f - B_n\right)/T\right]$$

Fusion/Fission competition for SHE

liquid drop + shell corrections

evaporation residue survival

Synthesis of heavy elements

Fusion

1 10¹²

Separator for Heavy Ion Products (SHIP)

Separator for Heavy Ion Products (SHIP)

Fusion products are slower than scattered or transfer particles

$$v_{CN} = \left[m_p / \left(m_p + m_t \right) \right] \cdot v_p$$

- $e.\,q.\,v_p\approx 10.3\% \ \ \rightarrow \ \ v_{CN}\approx 2.2\%$
- E- and B-field are perpendicular to each other

$$B \cdot \rho = \frac{m \cdot v}{e \cdot q}$$
$$E \cdot \rho = \frac{m \cdot v^2}{e \cdot q}$$

$$F_{mag} = F_{el} \Rightarrow F_{tot} = 0$$

electric deflectors: ±330 kV dipole magnets: 0.7 T max

Separator for Heavy Ion Products (SHIP)

The choice of E and B determines the transmitted velocity

$$v = \frac{E}{B}$$

The rejected beam will be stopped on a cooled Cu plate

SHIP – stop detector

position sensitive Silicon detector determines the position an energy of SHE and α , β , ...

area: 27*87mm², thickness: 0.3mm, 16 strips energy resolution $\Delta E=18-20 \text{ keV} @ E_{\alpha} > 6 \text{MeV}$ (cooling 260K) position resolution $\Delta x=0.3$ mm (FWHM)

SHE will be measured in a pixel

Wait for the emission of an α-particle (or β-particle) correlation method: implantation and decay event in the same pixel

Synthesis and identification of heavy elements with SHIP

Synthesis and identification of heavy elements with SHIP

Trans Actinide Separator and Chemistry Apparatu

New gas-filled Separator for SHE

Actinide targets (U, Pu, Am, ...) Highest UNILAC beam intensities

The gas-filled recoil-separator comprises a dipole magnet for spatial separation of ions according to their magnetic rigidity, followed by a quadrupole duplet for focusing the separated superheavy elements into the focal plane.

Vacuum or gas-filled separator

Fused nuclei leave the target in different charge states. In a gas-filled separator one obtains very fast an average charge state. (**B** \cdot **p** is independent of **v**), so that the transmission is increased substantially.

Vacuum or gas-filled separator

- Heavy ions leave the target in a charge distribution
- Vacuum systems accept only a few charge states
- excellent resolution

- Ion scattering with the gas (velocity of ions and electrons are almost equal)
- magnetic rigidity $B\rho$ is independent of the velocity, since also the average charge state depends on the velocity
- large acceptance

but: problems with resolution, background suppression

TASISPEC – TASCA Small Image Spectrometer

DSSSD: 0.5mm, 32x32 strips 4 SSSD: 1.0mm, 4x32 strips

Efficiency: ~80% (alpha) ~50-100 keV energy threshold

> Ge-cube: 4 Clover, 1 Cluster: 23 Ge crystals Efficiency: ~40% at 250 keV Multi-coincidence options

Comparison between potential model and exp. data

Fusion cross sections calculated with a static, energy independent potential

Comparison between potential model and exp. data

Fusion cross sections calculated with a static, energy independent potential

Comparison between potential model and exp. data

Fusion cross sections calculated with a static, energy independent potential

Fusion for a deformed nucleus

$$\sigma_{fus}(E) = \int_0^1 \sigma_{fus}(E,\theta) d(\cos\theta)$$

• The barrier is lower for $\theta = 0$ • The barrier is higher for $\theta = \pi/2$

Deformation enhances σ_{fus} by a factor of 10 - 100

Fusion below and above the barrier inconsistent

σ(mb)

_____ a = 0.66 fm______ a = 1.18 fm______ a = 1.65 fm $E_{c.m.} - V_B (MeV)$

 $E_{c.m.} - V_B$ (MeV)

M. Dasgupta et al., Phys Rev Lett 99 (2007) 192701

Inelastic scattering close to the Coulomb barrier

electromagnetic and nuclear excitation

208 Pb + 206 Pb at $E_{cm} = 641.7 \text{ MeV}$

 $C_p = 6.81$ fm, $C_t = 6.79$ fm, $R_{int} = 15.95$ fm, $V_C(R_{int}) = 607,0$ MeV $\theta_{1/4}^{cm} = 127.6^0$

$$\frac{d\sigma_{inel}}{d\Omega_{cm}} = \{\mathbf{1} - \mathbf{P_{abs}}(\mathbf{D}, \boldsymbol{\theta_{cm}})\} \cdot \frac{d\sigma_{coul}}{d\Omega_{cm}}$$

$$\sigma_{reac} = \boldsymbol{P}_{\boldsymbol{abs}}(\boldsymbol{D}, \boldsymbol{\theta}_{\boldsymbol{cm}}) \cdot \sigma_{\boldsymbol{Ruth}}$$

$$[1 - P_{abs}(D)] = exp\left\{-\frac{2}{\hbar}\int_{-\infty}^{+\infty} W[r(t)]dt\right\}$$
$$W[r(t)] = W_0 \cdot exp\left[-\frac{r(t) - C_1 - C_2}{a_I}\right]$$
$$[1 - P_{abs}(D)] = exp\left\{-\frac{2}{\hbar} \cdot W_0 \cdot exp\left[-\frac{D - C_1 - C_2}{a_I}\right] \cdot \frac{D}{v}\right\}$$

