GSI – Helmholtzzentrum für Schwerionenforschung

Indian Institute of Technology Ropar

PHL556: Accelerators and Detectors

Lectures: Hans-Jürgen Wollersheim

office: 360 phone: 0188 1242294 e-mail: h.j.wollersheim@gsi.de

Tuesday	15:50 - 16:40
Wednesday	11:45 - 12:35
Thursday	10:50 - 11:40

lecture room: L1, L1, L10

Tentative outline of accelerator lecture

✤ A History of Particle Accelerators

cathode rays are particles Rutherford scattering natural particle acceleration electrostatic accelerators: Cockroft Walton multiplier Van de Graaff accelerator Tandem accelerator

Cyclotron

motion in E- and B-fields cyclotron frequency and K-value sector focusing cyclotron

Radio-frequency accelerator

Wideroe structure Alvarez structure synchrotron

✤ Accelerator facility at GSI

heavy ion source charge stripper to increase the efficiency UNILAC, SIS-18

Radioactive Ion Beams

projectile fragmentation fragment separator at GSI target fragmentation isotope separation on line ISOLDE at CERN

Storage Rings

beam emittance stochastic cooling electron cooling laser cooling experimental storage ring at GSI

Large Hadron Collider

electron vs. proton machine fixed target vs. colliding beam experiment LHC layout and experiments

✤ Magnets

dipole, quadrupole, n-pole magnets

Accelerator light source

Bremsstrahlung Synchrotron radiation Inverse Compton scattering

Application

Medical application Ion implantation Spallation target Scanning Transmutation Radiocarbon dating

Wakefield Accelerator

Three orders of magnitude higher field gradient

Literature

Recommended Textbook

PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3875 EMail: techinfo@fieldp.com URL: http://www.fieldp.com

Recommended e-book

Additional material: http://uspas.fnal.gov/materials/materials-table.shtml

High Energy Physics & Nuclear Physics

- Understand the fundamental building blocks of nature and the force that act upon them
- Understanding the structure and dynamics of nuclear matter
- In short search for answer of the most fundamental questions
- Chemistry, Biology, Medicine, Material Sciences
 - Find the structure of molecules, proteins, cells ... with ultimate goal of determining structure of a single organic molecule as complex as a protein!
 - Determine structure of material and their properties (physics, chemistry, biology, medicine)
 - Resolve structural changes in a natural (femto-sec and atto-sec) time scales

Civil, Industrial and Military Applications

- Medical treatment of tumors and cancers
- Production of medical isotopes
- Ion implantation to modify the surfaces of materials
- National security: cargo inspections, ...

This list will never be complete ...

Accelerator allow us to discover the entire zoo of elementary particles and their combinations (states)

(E)

- ✤ We can accelerate charged particles:
 - electrons (e-) and positrons (e+)
 - protons (p) and antiprotons (\bar{p})
 - ions (e.g. H¹⁻, Ne²⁺, Au⁷⁹⁺, ...)
- Few accelerators use positrons or antiprotons
 - which are created by smashing accelerated electrons or protons onto a target
- These particles are typically "born" at low-energy
 - e⁻: emission from thermionic gun at ~100 kV
 - p/ions: sources at ~50 kV
- ✤ A few dedicated facilities accelerate unstable ions
 - radioactive ion facilities
- Finally, there is a discussion and developments towards a more exotic collider using unstable muon beams
 - with 2 microsecond lifetime in the rest frame

Units of energy: Electron Volts

- An "electron-volt" is the energy gained by a particle of unit charge is accelerated over 1V potential
- > It is really small
 - - our usual unit of energy.
 - A 1 kg weight dropped 1m would have 6.10¹⁸ eV of energy!

> On the other hand, it's a very useful unit when talking about individual particles

- If we accelerate a proton using an electrical potential, we know exactly what the energy is.
- It's also useful when thinking about mass/energy equivalence

 $(proton mass) \cdot c^{2} = 938\ 000\ 000\ eV \approx 1\ billion\ eV = 1\ GeV$ $(electron\ mass) \cdot c^{2} = 511\ 000\ eV \approx \frac{1}{2}\ MeV$

speed of light (c): 2.99792.10⁸ m/s

Few numbers and units

Particle	Charge	Charge, C	Rest mass, kg	Rest mass, eV/c ²
Electron, e ⁻	-е	-1.6·10 ⁻¹⁹	9.11·10 ⁻³¹	$0.511 \cdot 10^{6}$
Positron, e ⁺	+e	+1.6.10-19	9.11·10 ⁻³¹	$0.511 \cdot 10^{6}$
Proton, p	+e	+1.6.10-19	1.67.10-27	938.3·10 ⁶
Antiproton	-е	-1.6·10 ⁻¹⁹	1.67.10-27	938.3·10 ⁶
Ion, ${}^{A}_{Z}X$	Ze	+Z·1.6·10 ⁻¹⁹	~A·u	~A·u
Atomic mass unit, u			1.66.10-27	931.5·10 ⁶

Understanding Energy

High Energy Physics is based on Einstein's equivalence of mass and energy

$$E = m \cdot c^2$$

> All reactions involve some mass changing either to or from energy

0.00000005 % of mass converted to energy

~ 0.1 % (of just Hydrogen!) converted

If we could convert a kilogram of mass entirely to energy, it would supply all the electricity in the United States for almost a day.

Kinetic Energy

A body in motion will have a total energy given by

$$E = \frac{m_0 c^2}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}} \equiv \gamma \cdot m_0 c^2$$

> The difference between this and $m_0 c^2$ is called the *kinetic energy*

$$T_{kin} = m_0 c^2 \cdot (\gamma - 1)$$

Kinetic Energy [MeV]

Relevant Formulae

The relevant formulae are calculated if A_1 , Z_1 and A_2 , Z_2 are the mass number (amu) and charge number of the projectile and target nucleus, respectively, and T_{lab} is the kinetic energy (MeV) in the laboratory system

$$E = T_{lab} + m_0 \cdot c^2$$
$$m \cdot c^2 = T_{lab} + m_0 \cdot c^2$$
$$\frac{m_0 \cdot c^2}{\sqrt{1 - \beta^2}} = T_{lab} + m_0 \cdot c^2$$

beam velocity:

$$\beta = \frac{\sqrt{T_{lab}^2 + 1863 \cdot A_1 \cdot T_{lab}}}{931.5 \cdot A_1 + T_{lab}}$$

2

Lorentz contraction factor:

$$\gamma = (1 - \beta^2)^{-1/2}$$

$$\gamma = \frac{931.5 \cdot A_1 + T_{lab}}{931.5 \cdot A_1}$$

$$\beta \cdot \gamma = \frac{\sqrt{T_{lab}}^2 + 1863 \cdot A_1 \cdot T_{lab}}{931.5 \cdot A_1}$$

Relativity and Units

Basic Relativity

total energy:
$$E = \gamma \cdot m_0 c^2$$

kinetic energy: $T_{lab} = E - m_0 c^2 = m_0 c^2 \cdot (\gamma - 1)$
momentum: $p = \gamma \cdot m_0 v = \gamma \cdot \beta \cdot m_0 c = m_0 c \cdot \sqrt{\gamma^2 - 1}$
 $E = \sqrt{(m_0 c^2)^2 + (pc)^2}$
 $p = \sqrt{(\gamma \cdot m_0 c)^2 - m_0^2 c^2}$

> Units

For the most part, we will use SI units, except
 Energy: eV (keV, MeV, etc.) [1 eV = 1.6·10⁻¹⁹ J]
 Mass: eV/c² [proton = 1.67·10⁻²⁷ kg = 938.3 MeV/c²]
 Momentum: eV/c [proton @ β = 0.9, → 1.94 GeV/c]

Another way to look at energy

> Quantum mechanics tells us all particles have a wavelength

Planck constant

So going to high energy allows us to probe smaller and smaller scales

> If we put the high equivalent mass and the small scales together, we have ...

Different accelerators

GSI – Helmholtzzentrum für Schwerionenforschung

Indian Institute of Technology Ropar

Accelerator facility

Accelerator facility

How do we see an object?

A light bulb shines on a hand and the different reflections make the fine structure visible.

With a magnifying glass or microscope more details can be seen, but there is a fundamental limit:

The wavelength of the light (1/1000 mm) determines the size of the resolvable objects.

available wavelength

electromag	gnetic wave	es $E = \frac{\pi}{2}$
LW	3000 m	
MW	300 m	
KW	30 m	
UKW	3 m	
GPS	0.3 m	
Infrared	10 ⁻⁶ m	
light	5·10 ⁻⁷ m	2 eV
UV	10 ⁻⁷ m	10 eV
X-ray	10 ⁻¹⁰ m	10 ⁴ eV
γ-ray	10 ⁻¹² m	10 ⁶ eV

light bulb - magnifying glass or microscope -

 \rightarrow accelerator \rightarrow detector

Detectors – the eyes of a particle phycisist

- What means visibility?
- visibility = capability to create an image

- Projectiles \rightarrow Target \rightarrow Detector
- One needs:
 - 1. size of projectile « size of object
 - 2. target accuracy « size of object

How do we detect what's happening?

• Projectile: glow-in-the-dark basketballs

 (\mathfrak{S})

How do we detect what's happening?

• Projectile: glow-in-the-dark tennis balls

 (\mathfrak{S})

How do we detect what's happening?

• Projectile: glow-in-the-dark marbles

...let's get out of here!

Energy, wavelength and resolution

wavelength versus resolution

Small objects (smaller than λ) do not disturb the wave \rightarrow small object is not visible

Large objects disturb the wave

 \rightarrow large object is visible

***** all particles have wave properties:

 $\lambda = \frac{h}{p} = \frac{hc}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}}$

Louis de Broglie

 $h \cdot c = 1239.84$ [MeV fm]

Wave properties of atoms

- excited Helium is easier to detect
- wavelength (i.e. velocity) has a resolution of 5%
- slits!!

Carnal&Mlynek, PRL 66,2689)1991 Graphik: Kurtsiefer&Pfau

Importance of high particle energies

For the investigation of small dimensions (10^{-15} m) high photon energies are needed:

$$E_{\gamma} = h \cdot \nu = \frac{hc}{\lambda} = 2 \cdot 10^{-10} [J]$$

In case of Bremsstrahlung, the electron energy is given by

$$E_e > E_{\nu}$$
 with $E_e = e \cdot U$

An extremely high voltage is needed

$$U = \frac{E_e}{e} = 1.2 \cdot 10^9 \, [V]$$

