GSI Helmholtz Centre for Heavy Ion Research

Accelerator facility

Ion source

To create ions one needs:

- 1. electrons
- 2. noble gases
- 3. element material (e.g. Fe, Sn, Pb, U)

Penning ion source

Ionization

Discharge voltage Discharge current Magnetic flux Filament heating Power consumption

T _e	in	the	orc	ler	of
Cı	irre	ent o	len	sity	y

0.31.3 kV
520 A
0,22 T
0.5 kW
up to 20 kW

1 eV 10 mA/cm²

Hans-Jürgen Wollersheim - 2017

Ionization for positive ions

collisions with

photons

Impact Ionization

$$A^{Z+} + e \quad \leftrightarrow$$

Impact excitation

$$A^{Z^+} + e \quad \leftrightarrow$$

Photo ionization

$$A^{Z+} + h\upsilon \leftarrow$$

Three-Body-Recombination (TBR)

$$A^{(Z+1)+} + e' + e'$$

Impact disexcitation

$$(A^{Z+})^* + e' \implies N$$

A^{Z+}: Atom of species A with charge state Z e': electron changed energy

on-radiative transition

Radiative Recombination (RR)

Line spectrum

Excitation

$$A^{Z^+} + h\upsilon \quad \leftrightarrow$$

Spontaneous emission

 $A^{Z^+} + h\upsilon + e \iff A^{Z^+} + e' \Longrightarrow$

$$\leftrightarrow (A^{Z+})^*$$

1

Bremsstrahlung

 $A^{(Z+1)+} + e$

\

Continuous spectrum

Cathode Ray Tube

Hans-Jürgen Wollersheim - 2017

Cathode Ray Tube

Indian Institute of Technology Ropar

Ì

How to create ions?

Volume ion source with filament

Multi Cusp Ion Source with permanent magnets

Electrons generated from a filament and used for ionization within a gas volume. Magnetic field guides electrons towards the plasma chamber.

Penning ion source for gases and metals

UNIversal Linear ACcelerator

➢ From zero to 2,000,000 km/h

with a voltage of 20,000 V to 130,000 V ions will be accelerated to v/c = 0.002

GSĬ

UNILAC Wideroe - Accelerator

Gas-stripper to increase acceleration efficiency

 $N \cdot {}^{238}U^{4+}$

IH

0.13·N·²³⁸U²⁸⁺

v/c = 5.4% or 1.4 MeV/u

increase of accel. efficiency by a **factor** of 28/4 = 7 but $\approx 87\%$ of ions get lost (q $\neq 28$)

GSI

Indian Institute of Technology Ropar

UNILAC Alvarez Accelerator

108 MHz high frequency standing wave

Indian Institute of Technology Ropar

Hans-Jürgen Wollersheim - 2017

UNILAC: Beam transfer to synchrotron SIS-18

Foil Stripper and Charge State Separation

GSİ

(Č)

GSI Synchrotron SIS-18

As linacs are dominated by cavities, circular maschines are dominated by magnets

SIS-18 accelerating cavity

GSI Synchrotron SIS-18

GSI Synchrotron SIS-18

SIS: Schwere Ionen Synchrotron Heavy Ion Synchrotron

- SIS 18 has a circumference of 216 m
- 92 elements will be accelerated from p to U
- max. ion velocity up to 270 000 km/s ($\beta = 90\%$)
- ions are accelerated by 80 000 V in the accelerator structures during every circulation
- ions are accelerated in one second cover a distance of 90 000 km, that corresponds to 416 000 cycles in the ring
- 32 billion medium-charged uranium ions can be accelerated at SIS 18
- one billionth Pascal: an ultra-high vacuum is a prerequisite for acceleration.

Nuclear reaction rate

Reaction rate (**thick target**):
$$R[s^{-1}] = \phi_p[s^{-1}] - \phi[s^{-1}] = \phi_p[s^{-1}] - \phi_p[s^{-1}] \cdot e^{-N_t[cm^{-2}]\sigma[cm^2]}$$

 $\phi[s^{-1}] = \phi_p[s^{-1}] \cdot e^{-\frac{x[g/cm^2]6.02 \cdot 10^{23}\sigma[cm^2]}{A[g]}}$

Reaction rate (**thin target**):

$$R[s^{-1}] \cong \phi_p[s^{-1}] \cdot N_t[cm^{-2}] \cdot \sigma[cm^2]$$
$$R[s^{-1}] \cong \phi_p[s^{-1}] \cdot \frac{x[g/cm^2] \cdot 6.02 \cdot 10^{23}}{A[g]} \cdot \sigma[cm^2]$$

Example:
$${}^{238}U\left[1\cdot 10^9 \ s^{-1}\right]on \ {}^{208}Pb \ x = 1.3\left[g \ / \ cm^2\right] \rightarrow {}^{132}Sn \ (\sigma = 15.4[mb])$$

Reaction rate: 57941[s⁻¹] transmission (SIS/FRS)=70%, transmission (FRS) 1.9%

 $1 - e^{-y} \cong y \qquad for \quad y = 0.02$

Primary reaction rate:
$$\phi_f[s^{-1}] \cong \phi_p[s^{-1}] \cdot \frac{x[g/cm^2] \cdot 6.02 \cdot 10^{23}}{A_t[g]} \cdot \sigma_f[cm^2]$$

Example: ²³⁸U (10⁹s⁻¹) on ²⁰⁸Pb (x=1g/cm²) \rightarrow ¹³²Sn (σ_f =15.4mb) reaction rate: 44571[s⁻¹]

Example: ¹²⁴Xe (10⁹s⁻¹) on ⁹Be (x=1g/cm²) \rightarrow ¹⁰⁴Sn (σ_f =5.6µb) reaction rate: 375[s⁻¹]

The optimum thickness of the production target is limited by the loss of fragments due to secondary reactions

Primary + secondary reaction rate:

$x[g/cm^2]$	$\frac{1}{\mu_f - \mu_p} \left[e^{-\mu_p \cdot x} - e^{-\mu_f \cdot x} \right]$
1	0.79
2	1.25
3	1.47
4	1.55
5	1.53
6	1.45

Indian Institute of Technology Ropar

$$\phi_{f}[s^{-1}] \cong \phi_{p}[s^{-1}] \cdot \frac{6.02 \cdot 10^{23} \cdot \sigma_{f}[cm^{2}]}{A_{t}[g]} \cdot \frac{1}{\mu_{f} - \mu_{p}} \cdot \left(e^{-\mu_{p} \cdot x[g/cm^{2}]} - e^{-\mu_{f} \cdot x[g/cm^{2}]}\right)$$

with $\mu = \frac{6.02 \cdot 10^{23}}{A_{2}[g]} \cdot \sigma_{reaction}[cm^{2}]$

Example:
$${}^{124}Xe \text{ on } {}^{9}Be \rightarrow {}^{104}Sn, \quad \sigma({}^{124}Xe + {}^{9}Be) = 3.65[b] \rightarrow \mu_p = 0.244[cm^2/g]$$

 $\sigma({}^{104}Sn + {}^{9}Be) = 3.44[b] \rightarrow \mu_f = 0.230[cm^2/g]$

