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Radioactive Ion Beams 
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Solar abundances of elements 

Big Bang 

Solar abundance (Si28 = 106) 
 

fusion reactions neutron reactions 

Mass number 

• Why is Fe more common  
   than Au ? 
 
• Why do the heavy elements 
   exist and how are they  
   produced? 
 
• Can we explain the solar 
   abundances of the elements? 

open questions: 
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Spallation & Projectile Fragmentation Reactions 

Spallation 

Fragmentation 
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High-energy proton-induced nuclear reactions 

Some early high-energy proton accelerators: 

Facility Energy from year 
Bevatron (Berkeley)        6 GeV 1954..... 
AGS (Brookhaven)      11 GeV 1960..... 
Fermilab (Chicago) >300 GeV 1967..... 

They were also used to bombard various stable target materials. 
 
These targets were analyzed with radiochemical methods, 
i.e. γ-spectroscopy with or without chemical separators 
 
          Production cross sections and (some) kinematics for suitable radioactive isotopes 
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High-energy proton-induced nuclear reactions 

Important findings: 
 Energy-independence of cross sections 

 Bell-shaped Z-distribution for constant A 

 Mass yields: exponential slope p+Au 
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Proton- vs. heavy-ion induced reactions 

Proton- and heavy-ion 
induced reactions give very 
similar isotope distribution: 

28 GeV p + 238U 

8 GeV 48Ca+Be 

Na 

Target fragmentation:          GeV p + Atarget → A 
 
Projectile fragmentation:    GeV/u Aproj + p → A 
 
are equivalent 
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Projectile fragmentation reactions 

abrasion 

projectile 

target nucleus 
ablation 

projectile fragment 

At GeV energies nucleons can be regarded as a classical particles 
 Nucleon-nucleon collisions can be treated classically using measured free nucleon-nucleon cross sections 

(intra-nuclear cascade). 
 In these collisions very little transfer momentum is exchanged. 
 After the cascade the residual nucleus is highly excited. 
 Heavy-ion projectiles can be treated as a bag of individual nucleons. 

Physical models: Two-step approach 
 
Step 1: Intranuclear-cascade models or Abrasion models 
Step 2: Evaporation calculation 
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Projectile fragmentation reactions 

Projectile Target 
Projectile 
Fragment 

Projectile Fragmentation 

Projectile 

Target 
Projectile 
Fragments 

Projectile Fission 
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In-Flight Separation of Radioactive Ion Beams 

Primary (production) target  
Peripheral nuclear  reactions 
Forward focused products 

Electromagnetic 
separator 

Secondary 
(reaction) target  

 
Experimental 

area 

Selected radioactive beam 
E >> 20 AMeV 

 

Stable HI projectile source 
E ~ 1000 AMeV 
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Fragmentation at Relativistic Energies 

FRS  

FRS 

FRagment Separator 

abrasion 

projectile 

target nucleus 
ablation 

projectile fragment 
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Radioactive Ion Beams at GSI 

1GeV/u U + H 

About 1000 nuclear 
residues identified 

A/Z-resolution ~10-3 
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FRagment Separator at GSI 

 

in-flight A and Z selection    
energy resolution: ~ 1 GeV  

131Sn 132Sn 
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Rare Isotope Selection at FRS: Bρ-ΔE-Bρ Selection 

20m secondary beam 

78Ni ~ 100 AMeV 
primary beam 

86Kr ~700 AMeV 

production target 
9Be 

fully striped 
fragments 
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Rare Isotope Selection at FRS: Bρ-ΔE-Bρ Selection 

Βρ ∝ βγ Α/Ζ 

20m secondary beam 

78Ni ~ 100 AMeV 

Βρ ∝ βγ Α/Ζ 

primary beam 
86Kr ~700 AMeV 

production target 
9Be 

∆Ε ∝ Ζ2f(β) 

magnetic dipoles  degrader 

Transmission :  
• 20-70 % for fragmentation 
• < 2 %    for fission 

magnetic dipoles  
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Production, Separation, Identification 

SIS 

FRS 

abrasion ablation 

fragment 

FRagment 
Separator 

TPC-x,y 
position 
@ S2,S4 

Plastic 
scintillator 
(TOF)  
@ S4 

MUSIC 
(ΔE)  
@ S4 

Standard FRS detectors 

86Kr, 480MeV/u 

56Cr, 100MeV/u 
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Production, Separation, Identification 

MUSIC 
ionization 
chamber;  

Z 
scintillator scintillator 

β 

multiwire chamber or TPC; 
beam position 

Y 

X 

Das Bild kann zurzeit nicht angezeigt werden.

56Cr 

Z 

A/Q 

86Kr, 480MeV/u 

56Cr, 100MeV/u 
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Production, Separation, Identification 

ionization 
chambers 

(MUSIC41,42) scintillator 
(SC41) 

multiwire 
chambers 

(MW41,MW42) 
degrader 

beam 
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Production of radioactive ion beams 

Random removal of protons and neutrons from 
heavy target nuclei by energetic light projectiles 

Random removal of protons and neutrons 
from heavy projectile in peripheral collisions 

Target fragmentation 

Projectile fragmentation cooling by evaporation 
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ISOLDE at CERN 
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ISOLDE at CERN 

targets 

RIB at 60 keV 

RIB at 3 MeV/A 

1. 
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Production targets 

converter target standard target 

  Over 20 target materials and ionizers, 
depending on beam of interest 

 

  U, Ta, Zr, Y, Ti, Si, … 
 

  Target material and transfer tube heated to 
1500 – 20000 C 

 

  Operated by robots due to radiation 

target 

converter 

target 
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Inside a standard target 
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Ionization 

  Lasers 
  Plasma 
  Surface 
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Beam extraction and separation 

  All produced ions are extracted by electrostatic field (up to 60 kV) 
 

  The interesting nuclei are mass selected via magnetic field 
  Lorentz force depends on velocity and mass 
   𝑚𝑚 ∆𝑚𝑚⁄ < 5000, so many unwanted isobars also get to experiments 
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Production, ionization, extraction 
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Separation 
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Post-acceleration 
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Extracted nuclides 
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High-Intensity and Energy upgrade of Isolde (HIE-Isolde) 
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An example: Selective production of Astatine 

Guinness World Records has dubbed this element the rarest on Earth, stating: “Only 
around 25g of the element astatine occurring naturally” 
 ⇒ Ionization potential not experimentally deduced 
 ⇒ Only two atomic transitions were known 
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Example: Astatine isotopes 

  How to produce pure beams of At isotopes (all are radioactive)? 
  Use laser to ionize them 
  Determine for the first time the At ionization potential 

S. Rothe et al.; Nature Communications 4 (2013), 1835 
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Determination of the atomic properties of Astatine 

  Determination of ionizing potential 
  Identification of new atomic transitions 
  Comparison with atomic theory 
  Scan of ionizing laser: converging Rydberg 

levels allow precise determination of the IP 
  laser spectroscopy 
  Test of atomic theory and quantum 

chemistry 
  Properties of chemical homologue Z = 117 
  New beams / exotic decay modes: β-fission 
  Potential development of 211At as a medical 

radioisotope 
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The resonance ionization laser ion source (RILIS) 
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40 MV post-accelerator 
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40 MV post-accelerator 

HIE-ISOLDE has innovated many new ideas, particularly in space-
saving solutions. One way the engineers kept the system compact was 
to build cryomodules that each contain five cavities, not just one 
(Image: Maximilien Brice/ CERN) 

The new linac had to fit into just 16 m of space. “We had to 
develop a very compact linac. That’s what makes it unique. In 
other facilities, every cavity has its own cryostat but if we had 
to do that it would be far too long, so we had to squeeze all of 
them into one cryomodule. We had to have the solenoids fitted 
too, they’re almost the same length as a cavity, so we had to do 
lots of design, research and development. The biggest challenge 
was to design in spaces with clearances of just 1 mm,” explains 
Yacine Kadi, project leader for HIE-ISOLDE. (Image: 
Maximilien Brice/CERN) 

https://cds.cern.ch/images/OPEN-PHO-ACCEL-2016-016-9
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The Miniball Germanium Array 

https://cds.cern.ch/images/CERN-PHOTO-201707-167-18
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Coulomb excitation experiments at REX-Isolde 
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