Experimental Storage Ring — ESR E,,, = 420 Meviu, 10 Tm

Indian Institute of Technology Ropar Hans-Jirgen Wollersheim - 2017



Specification of the ESR

Particle iti
e 7, Two 5 kV rf-cavities
detectors < {t‘}...

Re-injection

to SIS
Y
lli_ Magneis
-
Schottky -
pick-ups
Gas jet =

Vacuum

L=108m=1/2Lgs 2
p=2- 10 mbar 2
E =3...420 MeV/u
f=~1..2 MHz

B =0.08...0.73
Qny = 2.65

Maximum Bending Power 10 T+ m

Magnet Power

RF Acceleration

Beam Ciagnosis 1

Fast Injection

Circumderence 108 m

6 Dipoles, 1.6 Tesla
4 Triplettlenses

4 Duplettlenses

8 Sextupolelenses

Dipoles 3.7 kKA at 1.6 kV
Field Ramp max. 1 T/s -

e~ cooler
| =10...500 mA

2 Cavities at & kV
Frequency Span 0.8 - 5 MHz

i

operational 107" Torr
bakable to 300 °C L

Position Monitors Six 600 d|p0|es
DC Transformer

fast Transformer
Profile Harp
Faraday Cup

Beam Scraper

..L-\.L..L-\.L-—Lm

R S
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Bunch dimensions

¢ For uniform charge distributions
we may use “hard edge values”

+» For Gaussian charge distributions
g
use rms values o,, o, o,
We will discuss measurements of bunch
size and charge distribution later
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But rms values can be misleading
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] 0.2F :
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-0.050 |- 4 [ ]
| 02f :
_0.10-.,..|,=..|....1....- _0.3:....Il...l....l....l....l....‘
-0.1 -0.05 0 0.05 0.1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
y (em) y (cm)
Gaussian beam Beam with halo
We need to measure the particle distribution!
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Coordinate space

Each of N, particles is tracked in ordinary 3D-space

orbit traces

RIS GTRRIS
S v

WAV SNV 2. t"‘&Y¢ i
ORSEAOKIRERKS

Not too helpful!
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Configuration space

6 N,-dimensional space for N, particles; coordinates (x;, p;), 1 =1, ..., N,
The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics
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Configuration space example:

1 particle in an harmonic potential

), constant Dy

But for many problems this description carries much more information than needed:

We don’t care about each of 1019 individual particles

But seeing both x & p, looks useful
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Phase Space (gas space in statistical mechanics)

6-dimensional space for N, particles
The it particle has coordinates (x;, p;), i = X, Y, Z
The bunch is represented by N, points that move in time
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""""""""""""
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]
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In most cases, the three planes are to very good approximation decoupled
= One can study the particle evolution independently in each planes
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Particle Systems & Ensembles

% The set of possible states for a system of N particles is referred as an ensemble in
statistical mechanics.

% In the statistical approach, particles lose their individuality.

% Properties of the whole system are fully represented by particle density functions
fep and fop:

foo (%, Px, ¥, Py, 2,0;) dx dp, dy dp,, dz dp, fop(xp,pi) dx;jdp; =123

where j fep dx dpy dy dp,, dz dp, = N
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Longitudinal phase space

* In most accelerators the phase space planes are only weakly coupled.

— Treat the longitudinal plane independently from the transverse one

— Effects of weak coupling can be treated as a perturbation of the uncoupled
solution

 In the longitudinal plane, electric fields accelerate the particles
— Use energy as longitudinal variable together with its canonical conjugated time
% Frequently, we use relative energy variation § and relative time T with respect to a
reference particle

0 = T=t_t0

% According to Liouville, in the presence of Hamiltonian forces, the area occupied
by the beam in the longitudinal phase space is conserved
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Transverse phase space

% For transverse planes {x, p,} and {y, p, }, use a modified phase 4
space, where the momentum components are replaced by:

, dx . ady
pxi_)x =% pyl_)y =£ W

where s is in the direction of motion

H?

X/

¢ We can relate the old and new variables (for B, # 0)

where § = % andy = (1 — p?)~1/2

Note: x; and p; are canonical conjugate variables while x and x’ are not, unless there is
no acceleration (y and 8 constant)
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Emittance describes the area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

Phase space of an
harmonic oscillator

kﬁ(x) - frequency of
rotation of a phase
volume

RMS emittance

83 = RE(VE _(RI)E)/CE
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Why Is emittance an important concept

1) Liouville: Under conservative forces phase space

o E:W evolves like an incompressible fluid =
= @'. t:,
" - =
’ . .
/ 2) Under linear forces macroscopic (such as
/ focusing magnets) & y = constant emittanceis
{]D @t an invariant of motion

3) Under acceleration ye = ¢, is an adiabatic
invariant

Is there any way to decrease the emittance?

This means taking away mean transverse momentum
but
keeping mean longitudinal momentum
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What Is beam cooling?

Beam cooling is synonymous for a reduction of beam temperature

Temperature is equivalent to terms as
phase space volume, emittance and momentum spread

Beam cooling processes are not following Liouville’s Theorem:

(which neglects interactions between beam particles)

“In a system where the particle motion is controlled by external
conservative forces the phase density is conserved”

Beam cooling techniques are non-Liouvillean processes
e.g. interaction of beam particles with other particles (electrons, photons)

s Benefit of beam cooling:
e Improved beam quality (precision experiments, luminosity increase)

£y
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Beam cooling at the ESR

What is cooling?  What is temperature?

(g.kj.TM:%'m'<‘7fn>

v is the velocity relative to a reference particle, which moves with an average ion-velocity.
The temperature is a measure of the random movement.

In an accelerator

T, =M -c* 'IBZ '<Ap/ p>2

TJ_:M.CZ.IBZ.j/Z.g( 1 + 1 ]

(Bu) (By)
Why beam cooling? n
Improve of the beam quality P EEEEEE p
« smaller beam size and reduction of the emittance 5 e

Q00
[

a0an
el

i [

* broadening of the energy CHRNNRRCEN - D
* better beam intensity, accumulation CuEm

« lifetime of the beam
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Beam temperature

Where does the beam temperature originate from?
The beam particles are generated in a “hot’ source

Thermal particle motion (temperature is conserved)

at rest (source) low energy high energy

1 1 1 5o\’
longitudinal EkBT" = —my,? = =mc?p? <ﬂ>

2 2 p
temperature
1 1 1 ,
transverse EkBTl = Emvlz = Emczﬁzyzel
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Benefits of beam cooling

% Improve beam quality
» Precision experiments
» Luminosity increase

% Compensation of heating
» Experiments with internal target
» Colliding beams

% Intensity increase by accumulation
» Weak beams from source can be increased
» Secondary beams (antiprotons, rare isotopes)
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Electron cooling

electron collector electron gun

I: 5-500 mA _
| | | _ Ver = Vion

L

highI voltage pla'tform

D'_l = me/Mion (=

e.g.. 200 keV electrons
cool 400 MeV/u ions

electron beam

lon beam
\ electron temperature:
kpT, =~ 0.1eV
& - i . B1l
X \b N | inbeam frame: | ksTy ~ 0.1 — 1 meV
\f Y & gt N / \ cold electrons interacting
T X with hot ions
e v Y
N & Jw/! e e

superposition of a cold
intense electron beam
with the same velocity

momentum transfer by Coulomb collisions

cooling force results from energy loss

G. Budker in the co-moving gas of free electrons

G.l. Budker, At. En. 22 (1967) 346
G.l. Budker, A.N. Skrinsky et al., IEEE NS-22 (1975) 2093
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Characteristics of electron cooling force

in reference frame

- of the beam
Analogy: energy loss in matter —— —
. P
(electrons in the shell)
faster ion slower ion
. At - Q%e* n v cooling force F
P = — 28 e [ o) - () 2 a5 for small elative velocity:
(4mey)2 - m, V3, or small relative velocity: « v,
for large relative velocity: o« v -3
s —_— — 1 1 . 2
Vrol = Vign — Ve Increase with charge: « Q
I ' I ' i 1 v I 1000 3520 | . LER T T S | ) Y LI S L | L7 L
0,04 . F -2
A proton i o L F Vrel F « Vyel 1
0,03 | 400 MeV i 3 E
s [=1A ] : ]
0,02 . 10 3 3
0,01 - - 1 ; -
T T | ]
= 0,00 2 0.1 -
B 0,01 . = 001 1
-0,02 - - o ' 36+ 1
0,03 | 4 /,/’— Ar'™ 400 MeV/u i
i B4 7 — c* L=1A :
0,04 v\\ B el proton ]
1 s | . L | 1 1E-5, bt PR P | |
-200000 -100000 0 100000 \~\200000 ’,/ 1000 10000 100000
v, [m/s] \\\ ,/', v, [m/s]

~

~’maximum cooling force at effective electron temperature

. . [ ]
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Simple derivation of electron cooling force

in reference frame

: fthe b
Analogy: energy loss in matter — of the ein;‘ _—
(electrons in the shell)
faster ion slower ion

2
9) __2Zy7ze Z, = Q (ion), Z, = —1 (electron)

Rutherford scattering: 2 - tan (—

2) 4mtegApv-b

)2 - Z_Qze4 1

Energy transfer: AE(b) = (ZAp (for b > bpin)

me (4n80)2mev2ﬁ
.. . e?
Minimum impact parameter: b,,;;, = (4n83)2mev2 from: AE(bpi) = AE, 4, = m,v?
. dE _ bmax 3. . - 4mQ%e* . bmax
Energy loss: —— = 2m fbmm bneAE db = =5, - In e

Coulomb logarithm L. = In(b,,0x/bmin) = 10 (typical value)

amE
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Example of electron cooling

1400 £ 40 . 18+ transverse cooling at ESR
: Ar — =400 s
1200
B 350 MeV/u — t=100 S
1000 :— Iel =50 mA —t=50s
800 :— Iion:40uA —t=0s

counts

600 |
400 £
200 measured with residual gas

ionization beam profile monitor

position [mm]

cooling of 350 MeV/u Ar®* ions 0.05 A, 192 keV electron beam n, = 0.8-10% cm3
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Electron cooling

G.l. Budker, At. En. 22 (1967) 346
G.l. Budker, A.N. Skrinsky et al., IEEE NS-22 (1975) 2093

intensity

frequency

momentum spread Ap/p = 10-°
diameter 2 mm

» The ions get the sharp velocity of electrons,

small size and divergence
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lonization cooling

% Hot muon beam:
- large transverse momentum
- cannot fit in the beam pipe in muon accelerator

lonization cooling:

ANETT o — Based on use of ionization energy loss of
. B T accelerated charged particles
. - l Reduce the transfers motion and accelerate them in
s - 4—__'1;;-};’ forward direction
Large x x ‘ ]tr:rl all emittance
emittance o
Absorber Accelerator

ABSORBER RADIO-FREQUENCY CAVITY

€

Accelaratn Forward

Slow Baam Accalarate Forward Slow Beam Accalerate Forward Slow Beam

Indian Institute of Technology Ropar Hans-Jurgen Wollersheim - 2017




Stochastic cooling: Implementation at the ESR

transv. Pick-up

Combiner-
Station

transv. Kicker

long. Pick-up

$=
ESR storage ring

Stochastic cooling is in particular efficient for hot ion beams
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Principle of ‘stochastic’ cooling

A Feedback System: A detector or pick-up which measures the motion of the particle and a

corrector, the kicker, which adjusts their angles.

ORBIT OF A
PARTICLE

Measures the deviation of the

center of gravity of a sample

of particles with respect to PICK-UP
the requisite orbit and sends

an error signal to the kicker.

m KICKER

IDEAL BEAM
ORBIT

The kicker applies an electric
field to the same sample to
correct the deviation measured.
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Principle of ‘stochastic’ cooling

Self correction of ion trajectory Using a pick-up probe, the position of the ion beam
IS measured at a fixed position via the induced

signal. A deviation of the beam from the ideal orbit

e can be corrected by amplification of this signal.

The amplified signal is now used as a correction
e signal which acts on the beam at a second position
= (zero crossing of the betatron function) via a

I)* ((I "kicker”,

- Fick-up prabe

L,
= : |

This method was invented for the cooling of hot p(bar) by van der
Meer. He showed that after a cooling time of T oc N/C (N: particle
number, C = Bandwidth of the amplifier) a momentum width of the
beam of about Ap/p ~10-3 can be achieved by stochastic cooling.

i‘ sample of particias

Detection of the W boson from p < p(bar)
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fast pre-cooling of hot fragment beams

Stochastic cooling at GSI

electrodes installed

energy 400 (-550) MeV/u inside magnets

bandwidth 0.8 GHz (range 0.9-1.7 GHz)
Odp/p=1035% - 6p/p=210.01%

e=10-10"°m - e£=2-10"°m

L combination of signals
from electrodes
Kicker power amplifiers
for generation of
¢ correction kicks
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Comparison of Cooling Methods

Stochastic Cooling Electron Cooling
Useful for:  low intensity beams low energy
all intensities
hot (secondary) beams warm beams (pre-cooled)
high charge high charge
full 3-D control bunched beams

Limitations: high intensity beams  space charge effects
/problems  beam quality limited recombination losses
bunched beams high energy
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Principle of laser cooling (snowpiow)

only longitudinal cooling Atom
p=hk £

1. Absorption of photons from a laser beam: VAVAVAV, o E‘?
Energy and momentum must be conserved. —ho

2. Absorption of photons: p=hk
Momentum transfer in a defined direction E, P

(directed momentum transfer). E;

3. No defined direction for the spontaneous kLLL —hk
emission (isotropic re-emission): E, P=
Momentum transfer cancels out over many E,
absorption-emission-cycles. M

typical cooling times ~ 10 us
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Principle of laser cooling

2-step process

H
*

Incident photons absorbed:  Spontaneous emission: total t:ﬂ':::ﬂ::“min
momentum transfer = /ik momentum transfer =0 direction of laser

users.york.ac.uk

hitp:/finms-ienm.nre-cnre.ge.calresearchicesium_clock e himl
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Laser cooling at ESR

Piezo-driven laser beam stabilization

A

Y

Scrapers
_distance 6 m_

lasers ™M e

D S alignment

. including
ion beam cw laser te!escolpe

20 . . —
— | | detuning i
E -5 Hz AP/P~41077|  tube
- v -10Hz —=f - voltage /™
o} —20 Hz ‘ 1
=3
v 10 PM
£ os Mgt 1ONS Fluorescence Argon ion laser (257.3 nm)
£ fh=10) ] 25" light detection frequency doubled

00 1 1 1 1
—4 -2 o] 2
tube voltage [kV] -» Ap/p [107f]

. . o
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20,00 _SEC_AFTER_INI,

o
10 3
10e 3

e

Mol Pow, Dens, [arb,u, ]

107

L= IIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIII|_|_|_

500 BOO

D. Boutin

700 800 900 1000 100 1200 1300 1400
Frequency - 61240000 [Hz]
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Cooling with the ESR

SCHOTTKY MASS SPECTROMETRY

ISOCHRONOUS MASS SPECTROMETRY e

Injection

' > - | “am (m/a), =

\ Electron !

Schotik e

Ncoisc:atTF"’i'ckups Cooler — # P
TOF-Detector

el

Cooled Fragments Hot Fragments
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Schottky-Mass-

Spectroscopy Injection

4 particles with
different m/q

’ Septum

”_‘ [ ( Electron
Cooler
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Schottky mass spectroscopy

Sin(w,)

Fast Fourier Transform

1

] . | W3 Q, ®
time ,3) l l
-

fre o ency
W Sin(e,)
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Small-band Schottky frequency spectra

0.70

0.65
143m

o

(0))

o
1

Intensity / arb. units

0.35

030 ' m/Am 700 000

e | (1 particle)

so+ (94 keV

i

" (1 particle)

"

143g 62+
Sm

33800 33900 34000

|
34100 34200
Frequency / Hz

34300 34400 34500
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