

$$I(x) = I_0(\lambda) \cdot e^{-\frac{\mu(\lambda, Z)}{\rho} \rho \cdot x}$$

total absorption coefficient: μ/ρ [cm²/g]

$$\frac{\mu_{total}}{\rho} = \sum_{i=1}^{3} \sigma_i$$

- i=1 photoelectric effect
- i=2 Compton scattering
- i=3 pair production

Mass dependence of X-ray absorption

For X-ray radiation the photoelectric effect is the most important interaction.

$$(\mu/\rho)_{Photo} \approx \lambda^3 \cdot Z^5$$

Lead absorbs more than Beryllium!

 $_{82}$ Pb serves as shielding for X-ray and γ -ray radiation; lead vests are used by medical staff people who are exposed to X-ray radiation. Co-sources are transported in thick lead container.

On the contrary:

₄Be is often used as windows in X-ray tubes to allow for almost undisturbed transmission of X-ray radiation.

Mass dependence μ/ρ of X-ray absorption

X-ray image shows the effect of different absorptions

Bones absorb more radiation as tissues because of their higher 20Ca content

~ 100 keV

~1 MeV

~ 10 MeV

γ-ray energy

Photoelectric

Isolated hits

Probability of interaction depth

Photo effect:

Absorption of a photon by a bound electron and conversion of the γ -energy in potential and kinetical energy of the ejected electron. (Nucleus preserves the momentum conservation.)

Compton scattering:

Elastic scattering of a γ -ray on a free electron. A fraction of the γ -ray energy is transferred to the Compton electron. The wave length of the scattered γ -ray is increased: $\lambda' > \lambda$.

Maximum energy of the scattered electron:

$$T(e^{-})_{\text{max}} = E_{\gamma} \cdot \frac{2 \cdot E_{\gamma}}{m_{e}c^{2} + 2 \cdot E_{\gamma}}$$

Energy of the scattered γ -photon:

$$E_{\gamma}' = \frac{E_{\gamma} \cdot m_e c^2}{m_e c^2 + E_{\gamma} \cdot (1 - \cos \theta)}$$

$$\cos\theta = 1 + \frac{m_e c^2}{E_{\gamma}} - \frac{m_e c^2}{E_{\gamma}'}$$

Special case for E>> m_ec^2 : γ -ray energy after 180^0 scatter is approximately

$$E_{\gamma}' = \frac{m_e c^2}{2} = 256 \, keV$$

Gap between the incoming γ -ray and the maximum electron energy.

$$E_{kin}^{\max} = E_{\gamma} - E_{\gamma}^{'} = E_{\gamma} \cdot \frac{2 \cdot E_{\gamma} / m_e c^2}{1 + 2 \cdot E_{\gamma} / m_e c^2}$$

Compton scattering:

Elastic scattering of a γ -ray on a free electron. A fraction of the γ -ray energy is transferred to the Compton electron. The wave length of the scattered γ -ray is increased: $\lambda' > \lambda$.

Compton scattering:

Elastic scattering of a γ -ray on a free electron. The angle dependence is expressed by the

Klein-Nishina-Formula:

$$\frac{d\sigma_C}{d\Omega} = \frac{r_0^2}{2} \cdot \left(\frac{E_{\gamma'}}{E_{\gamma}}\right)^2 \cdot \left\{\frac{E_{\gamma}}{E_{\gamma'}} + \frac{E_{\gamma'}}{E_{\gamma}} - \sin^2\theta\right\}$$

As shown in the plot **forward scattering** (θ small) is dominant for $E_{\gamma}>100$ keV.

$$r_0 = 2.818 \text{ fm}$$

Pair production:

If γ -ray energy is >> $2m_0c^2$ (electron rest mass 511 keV), a positron-electron pair can be formed in the strong Coulomb field of a nucleus. This pair carries the γ -ray energy minus $2m_0c^2$.

Pair production for E_y >2 m_e c²=1.022MeV

picture of a bubble chamber

Gamma-ray interaction cross section

All three interaction (photo effect, Compton scattering and pair production) lead to an attenuation of the γ -ray or X-ray radiation when passing through matter. The particular contribution depends on the γ -ray energy:

The absorption attenuates the intensity, but the energy and the frequency of the γ -ray and X-ray radiation is preserved!

Gamma-ray spectrum of a radioactive decay

