Ionization detectors

incoming particle

ionization track

Minimum-ionizing particles (Sauli. IEEE+NSS 2002)

different counting gases:

GAS (STP)	Helium	Argon	Xenon	CH_4	DME
dE/dx (keV/cm)	0.32	2.4	6.7	1.5	3.9
<n> (ion pairs/cm)</n>	6	25	44	16	55

ionization process: Poisson statistics

detection efficiency ε depends on average number $\langle n \rangle$ of ion pairs

$\varepsilon \leq 1 - e^{-\langle n \rangle}$	GAS (STP)	thickness	E (%)
	Helium	1 mm 2 mm	45 70
	Argon	1 mm	91.8
	Ũ	2 mm	99.3

 \approx linear for $\Delta E \ll E$

Effective ionization energies

Excitation and ionization characteristics of various gases					
	Excitation potential	Ionization potential	Mea ion-	n energy for electron pair creation	
	[eV]	[eV]	[eV]		
H ₂	10.8	15.4	37		
He	19.8	24.6	41		
N_2	8.1	15.5	35	Mean energy per	
$\tilde{O_2}$	7.9	12.2	31	ion pair larger	
Ne	16.6	21.6	36	than TP because	
Ar	11.6	15.8	26	of avaitations	
Kr	10.0	14.0	24	of excitations	
Xe	8.4	12.1	22		
CO_2	10.0	13.7	33		
CH ₄		13.1	28		
C_4H_{10}		10.8	23		

Large organic molecules have low-lying excited rotational states

 \rightarrow excitation without ionization through collisions

Charge transport in gas

charge diffusion

 $w = w(E/\rho)$ $\overline{D} = \overline{D}(E/\rho)$

Ion mobility

GAS	ION	µ⁺ (cm² V⁻¹ s⁺¹) @STP
Ar	Ar ⁺	1.51
CH4	CH4+	2.26
Ar+CH ₄ 80	+20 CH ₄ +	1.61

ion mobility $\mu^+ = w^+/E$

For ions there is an interplay between acceleration and collisions. Ion mobility is independent of field for a given gas at ρ , T = const.

E. McDaniel and E. Mason; The mobility and diffusion of ions in gases (Wiley 1973)

Electron mobility

In general, the mobility of electrons is not constant, but depend on on their kinetic energy and varies with the electric field strength.

drift velocities of electrons in different gases

Amplification counters

single-wire gas counter

 gas counters may be operated in different operation modes depending on the applied high voltage.

X

Ionization chamber

An ionization chamber is operated at a voltage which allows full collection of charges, however below the threshold of secondary ionization (no amplification).

For a typical field strength 500 V/cm and typical drift velocities the collection time for 10 cm drift is about 2 μ s for e⁻ and 2 ms for the ions.

planar ionization chamber

G S I

Time evolution of the signals for **one e⁻ ion pair**:

Signal collection

- The motion of charges induces an apparent current in the electrodes.
- Ion causes the same signal as the electron = same sign, same amplitude, but much slower

$$i = \frac{q}{V_0} \frac{dV}{ds} \frac{ds}{dt}$$

Ionization chamber

- no gas gain
- ✤ charges move in electric field
- induced signal is generated during drift of charges
- \diamond induced current ends when charges reach electrodes

additional 'Frisch grid':

- electrons drift towards Frisch grid and induce a signal but not on the anode.
- when electrons pass the Frisch grid, a signal is induced on anode.
- the angular dependence of the electrons is removed from anode signal

primary ionization in gases: I \approx 20-30 eV/IP

energy loss $\Delta \epsilon$: $\mathbf{n} = n_I = n_e = \Delta \epsilon / I$ of primary ion pairs \mathbf{n} at x_0 , t_0 force: $F_e = -eU_0/d = -F_I$

energy content of capacity C

1)
$$W(t) = \frac{C}{2} \left[U_0^2 - U^2(t) \right] \approx C \cdot U_0 \cdot \Delta U(t)$$

2)
$$W(t) = n_e F_e[x_e(t) - x_0] + n_I F_I[x_I(t) - x_0]$$

$$= + \frac{n \cdot eU_0}{d} [x_I(t) - x_e(t)]$$

w⁺(t)·(t-t_0)

1)+2)
$$\Delta U(t) = \frac{W(t)}{C \cdot U_0} = \frac{n \cdot e}{C \cdot d} [w^+(t) - w^-(t)](t - t_0)$$

total signal: electron & ion components

total signal: electron & ion components

$$\Delta U(t) = \frac{\Delta \varepsilon}{C \cdot d} [w^+(t) - w^-(t)](t - t_0)$$
$$|w^+(t)| \sim 10^{-3} \cdot |w^-(t)|$$

drift velocities ($w^+ > 0, w^- < 0$)

Both components measure $\Delta \epsilon$ and depend on position of primary ion pair

 $x_0 = w \cdot (t_e - t_0)$

for fast counting use only electron component!

Proportional counter

gas amplification factor (typical 10⁴–10⁶) is constant

anode wire: small radius $R_A \approx 50 \ \mu m$ or less

voltage $U_0 \approx (300-500) V$

field at **r** from the wire

$$E(r) = \frac{U_0}{\ln(R_C/R_A)} \cdot \frac{1}{r}$$

avalanche $R_I \rightarrow R_A$, several mean free paths needed pulse height mainly due to positive ions (q⁺)

Proportional counter

The primary produced electrons drift the anode wire and reach the area of high electrical field strength. If a critical field strength is reached, a secondary ionization produces electrons in an avalanche.

time sequence of the signal evolution

Proportional counter

Multi-Wire Proportional Chamber

A multi-wire proportional chamber detects charged particles and gives positional information on their trajectory.

time resolution:

✤ position resolution:

Georges Charpak Nobel price 1992

fast anode signals ($t_{rise} \sim 0.1 \text{ ns}$) for d = 2 mm σ_x = 50-300 µm (weighted with charges)

Multi-Wire Proportional Chamber

Time Projection Chamber

- > Principle: Time Projection Chambers are based on the drift of the charge carriers with constant drift velocity v_D in a homogenous E-field (E = -dU/dz).
- > typical parameters: E ~ 1 kV/cm, $v_D \sim 1-4$ cm/µs, $\Delta z \sim 200$ µm
- \rightarrow 3-dim. traces: z from the drift time, (x,y) from the segmented anode

Anode wires

Geiger-Müller counter

- ✤ The discharge is not any more localized
- ◆ The number of charge carriers is not any more related to the primary ionization
- The gas amplification amounts to 10^8 - 10^{10}

