• A well-known example:

X

Magnetic Moments in ¹⁷⁸Hf

$$g(j) = \begin{cases} \frac{2 \cdot \ell \cdot g_{i} + g_{i}}{2 \cdot \ell + 1} & \text{for } j = \ell + 1/2 \\ \frac{2 \cdot (\ell + 1) \cdot g_{i} - g_{x}}{2 \cdot \ell + 1} & \text{for } j = \ell - 1/2 \end{cases} \quad \text{proton } g_{\ell} = 1 \quad g_{s} = 5.59 \\ \text{neutron } g_{\ell} = 0 \quad g_{s} = -3.83 \end{cases} \qquad 16^{+} \qquad 2636 \text{ keV} \\ y^{2} 7/2[514] 9/2[624] \\ \pi^{2} 7/2[404] 9/2[514] \\ g(h_{11/2}) = 1.42 \quad g(g_{7/2}) = 0.49 \quad g(f_{7/2}) = -0.55 \quad g(i_{13/2}) = -0.29 \\ g(j_{i} \times j_{2}; J) = \frac{1}{2} \cdot (g_{1} + g_{2}) + \frac{j_{1} \cdot (j_{1} + 1) - j_{2} \cdot (j_{2} + 1)}{2 \cdot J \cdot (J + 1)} \cdot (g_{1} - g_{2}) \\ g(h_{11/2} \times g_{7/2}; 8^{-}) = 1.08 \quad g(f_{7/2} \times i_{13/2}) = -0.36 \end{cases} \qquad 8^{-} \qquad 8^{-} \qquad \pi^{2} 7/2[404] 9/2[514] \\ g(8^{\circ} \times 8^{\circ}; 16^{+}) = 0.36 \quad \rightarrow \quad \mu = g \cdot I = 5.76 \text{ nm} \end{cases} \qquad 7.26 \pm 0.16 \text{ nm} \qquad 7.26 \pm 0.16 \text{ nm} \end{cases}$$

Helmer & Reich; Nucl. Phys. A114 (1968), 649

 $\pi: h_{11/2} g_{7/2} v: f_{7/2} i_{13/2}$

K-isomers: Where to find them?

Mass 180 region : Yb (Z=70) - Ir (Z=77)

High-K orbitals near the Fermi surface

 π : 7/2[404], 9/2[514], 5/2[402]

V: 7/2[514], 9/2[624], 5/2[512], 7/2[633]

Decay Study of the K = 16 Isomeric State

	$\frac{B(E2, I \rightarrow I - 2)}{B(E2, I \rightarrow I - 1)}$	rigid rotor K=8
10-	0.104 ± 0.012	0.0769
11-	0.171 ± 0.009	0.1607
12-	0.230±0.017	0.2517
13-	0.313±0.016	0.3500

E2/M1 mixing ratios are related to $\frac{g_K - g_R}{Q_{20}}$

mixed 2-quasiparticle configuration: $g_K = 0.36(2) > 0$

 ${\pi[514]9/2 + \pi[404]7/2}8^{-}$ and ${\nu[514]7/2 + \nu[624]9/2}8^{-}$

K - Isomerism

Indian Institute of Technology Ropar

Hans-Jürgen Wollersheim - 2017

¹⁷⁸Hf: Particle Spectroscopy

$$E_{E}(E,\theta_{cm}) = P_{I}(E,\theta_{cm}) \cdot d\sigma_{Ruth}(E,\theta_{cm})$$
$$= 4.82 \left(1 + \frac{A_{p}}{A_{t}}\right)^{-2} \frac{A_{p}}{Z_{t}^{2}} (E_{lab} - \Delta E') \cdot B(E2,0^{+} \rightarrow 2^{+}) \cdot df_{E2}(\xi,\theta_{cm})$$

I
$$P_I/P_{0^+}$$
 (160°)
2 6.8·10⁻²
4 7.6·10⁻⁴
17 4.0·10⁻⁴ $\sigma_{m2}/\sigma_{gs} = 0.05$

G. Ebel, diploma thesis

Coulomb Excitation of ¹⁷⁸Hf with ²⁰⁸Pb ions

 (\mathfrak{S})

Coulomb Excitation of ¹⁷⁸Hf with ²⁰⁸Pb ions

$$Q_{20} = 6.99(4) b$$
 $Q_{40} = 0.54 {\binom{26}{47}} b^2 \text{ or } -1.58(48) b^2$ $\beta_2 = 0.29(1) \beta_4 =$

J.H. Hamilton et al.; Phys. Lett. 112B (1982), 327: lifetime measurement R.M. Ronningen et al.; Phys. Rev C16 (1977), 2218; Phys. Rev. Lett. 40 (1978), 364

-0.20(4)

Coulomb Excitation of ¹⁷⁸Hf with ²⁰⁸Pb ions

E2, E3 excitation of collective states:

ground state band K = 0

 γ -vibrational band K = 2

> excitation of the K = 8 isomeric state observation of delayed γ -rays in the K = 0 ground state band

J.H. Hamilton et al.; Phys. Lett. 112B (1982), 327: lifetime measurement

Coulomb Excitation of the K = 8 Isomer in ¹⁷⁸Hf

162 NaI detectors 6 Ge detector

parameters and resolutions FWHM

Ei	5.5% at 1332 keV
t _i	2.8 ns
$W(\theta)$	140
E _{total}	18-22% for $M_{\gamma}=20$
M_{γ} 2	5-30% for $M_{\gamma} = 20$

The two basic observables which can be measured for the resulting γ -ray shower are the total energy emitted as γ -radiation and the number of γ -rays.

\sim ¹⁷⁸Hf + ¹³⁰Te at 560, 590, 620 MeV

particle detection at ~180⁰, Pb catcher (0.5 mm thickness) was positioned 1cm downstream to stop the recoiling 178 Hf ions.

Delayed sum-energy spectrum taken at 590 MeV. (delayed time window 20-65ns with respect to beam pulse) A peak associated to the $K^{\pi}=8^{-}$ shows up. The other peaks correspond to isomers of fusion products from target contaminants and β -decay.

H. Xie et al.; Phys. Rev. C48 (1993), 2517

Indian Institute of Technology Ropar

Coulomb Excitation of the K = 8 Isomer in ¹⁷⁸Hf

> ¹⁷⁸Hf + ¹³⁰Te at 560, 590, 620 MeV

Delayed γ -ray spectrum of the Crystal Ball with $850keV \le E_{sum}^{del} \le 1100keV$ and $3 \le N_{det} \le 6$. In addition at least one of the delayed γ -rays must have been detected in one of the Ge-detectors.

H. Xie et al.; Phys. Rev. C48 (1993), 2517

Decay of the Isomer by Barrier Penetration

rigid rotor model:

 $\left\langle I_{f} \| M(E2) \| I_{i} \right\rangle = \sqrt{2I_{i} + 1} \cdot \left(I_{i} 3K0 | I_{f}K \right) \cdot M_{30}$

2-Band K-Mixing Model

rigid rotor model:

 $\left\langle I_f \| M(E3) \| I_i \right\rangle = \sqrt{2I_i + 1} \cdot \left(I_i 3K0 | I_f K \right) \cdot M_{30}$

$$< I3K0|(I-2)K > = \sqrt{\frac{15(I+K-1)(I+K)(I-K-1)(I-K)}{(I-2)(I-1)I(2I-1)(2I+1)(2I+2)}} *K$$

$$< I3K0|(I-1)K > = -\sqrt{\frac{3(I+K)(I-K)}{(I-1)I(2I-3)(2I+1)(2I+2)(2I+3)}} *(5K^2 - I^2 + 1)$$

$$< I3K0|IK > = \frac{5K^2 - 3I^2 - 3I + 1}{\sqrt{(I-1)I(I+1)(I+2)(2I-1)(2I+3)}} *K$$

$$< I3K0|(I+1)K > = \sqrt{\frac{3(I+K+1)(I-K+1)}{I(I+1)(2I-1)(2I+1)(2I+4)(2I+5)}} *(5K^2 - I^2 - 2I)$$

$$< I3K0|(I+2)K > = \sqrt{\frac{15(I+K+1)(I+K+2)(I-K+1)(I-K+2)}{I(I+1)(I+2)(2I+1)(2I+3)(2I+6)}} *K$$

$$< I3K0|(I+3)K > = \sqrt{\frac{5(I+K+1)(I+K+2)(I+K+3)(I-K+1)(I-K+2)(I-K+3)}{2(I+1)(I+2)(I+3)(2I+1)(2I+3)(2I+5)}}$$

GSI

Coulomb Excitation of the K = 8 Isomer in ¹⁷⁸Hf

 \sim ¹⁷⁸Hf + ¹³⁰Te at 560, 590, 620 MeV

H. Xie et al.; Phys. Rev. C48 (1993), 2517

Indian Institute of Technology Ropar

decay scheme of ^{178m2}Hf

Production of ^{178m2}Hf in the past

	reaction	projectile energy (MeV)	$\sigma_{m}^{}/\sigma_{gs}^{}$	reference
177]	Hf(n,γ)	thermal	10-9	R.G. Helmer et al.; Nucl. Phys. A211, 1 (1973)
1817	Γa(γ,p2n)	≤85	low	F.W.N. de Boer et al.; Nucl. Phys. A263,1 (1976)
1817	Γa(α,αp2n)	120	-	J. Van Klinken et al.; Nucl. Phys. A339, 189 (1980)
1817	Γa(p,α)	92.5	10-3	W. Kutschera et al.; Radio. Beam Conf., 345 (1989)
176	Yb(a,2n)	26	0.01	T. Khoo et al.; Phys. Lett. 67B, 271 (1977)
		27	0.005	A. Kugler et al.; priv. communication
		32	0.05	NUPECC News 1991
		40	0.08	

decay scheme of ^{178m2}Hf

Production of 178m2 Hf using 176 Yb(α ,2n)

decay scheme of ^{178m2}Hf

The isotopic distribution of radioactive Hf nuclei

produced in the irradiation ⁴He + ¹⁷⁶Yb

Mass	170	171	172	173	175	178m	178g	179m
T _{1/2}	15.9h	12.2h	1.9y	24h	70d	31 y	stable	24.8d
Experiment	510 ¹⁰	1.51011	4.510 ¹²	1.31013	2.210 ¹³	1.610 ¹³		7.61011
Calculation	81010	1.510 ¹²	4.410 ¹²	0.81013	2.210 ¹³		2.91014	

decay scheme of ^{178m2}Hf

- magnet moment $\mu(16^+) = 7.3 \pm 0.2$ nm
- 4-qp state: $\pi[514]9/2 + \pi[404]7/2 + \nu[514]7/2 + \nu[624]9/2$
- production: 176 Yb(α ,2n) 178 Hf Dubna
- chemical separation Orsay, Dubna
- mass separation Orsay
- target preparation Orsay

chemistry by M. Hussonnois (IN2P3-CNRS Orsay, France)

Yu. Ts. Oganessian; J. Phys. G: Nucl. Part. Phys. 18 (1992),393

Target Analysis

inelastic p-scattering experiment

➤ X-ray analysis

		Br	Zr	Hf	Pt	
$^{178m2}Hf$	15µg	107	320	1278	33	counts/s
^{nat} Hf	40µg	-	223	3645	-	counts/s

> isomer-to ground state ratio: $\sigma_{m_2}/\sigma_{gs} = 2\%$

The ¹⁷⁶Yb(α ,2n) Reaction

Decay Study with the GSI-MPI Crystal Ball

162 NaI detectors 1 Ge detector

parameters and resolutions FWHM

Ei	5.5% at 1332 keV
t _i	2.8 ns
$W(\theta)$	14^{0}
E _{total}	18-22% for $M_{\gamma}=20$
M _γ 2	5-30% for $M_{\gamma} = 20$

The two basic observables which can be measured for the resulting γ -ray shower are the total energy emitted as γ -radiation and the number of γ -rays.

H. Xie et al.; Phys. Rev. C48 (1993), 2517

Decay Scheme of ^{175,178m2}Hf, ¹⁷²Lu

H. Xie et al.; Phys. Rev. C48 (1993), 2517

Inelastic d-Scattering Experiment

Q3D measurement at the Munich tandem

energy resolution: 12 keV

Inelastic d-Scattering Experiment

Inelastic d-Scattering Experiment

Q3D measurement at the Munich tandem

energy resolution: 12 keV

Inelastic Deuteron Scattering from K=16 Isomer

experiment performed at Munich tandem accelerator with Q3D spectrograph $(45^{0} - 100^{0})$ W, Ta, Mo, Cu result from sputtering and migration process in the mass-separator facility

•
$$E_x = 356.5 \pm 0.4 \text{ keV}$$
 17⁺ member of rotational band
 $\frac{\Im(^{178m^2}Hf)}{\Im(^{178}Hf)} = 1.48$

Coulomb Excitation of the K=16 Isomer

experiment performed at UNILAC accelerator

★ E_γ = 357.4±0.3 keV 17⁺ → 16⁺ transition
 ★ Q₀ (K=16) = 8.2±1.1 b rigid rotor model

E. Lubkiewicz et al.; Z. Phys. A355 (1996), 377

Coulomb Excitation of the K=16 Isomer

experiment performed at UNILAC accelerator

 $\begin{array}{ll} \bigstar & E_{\gamma} = 357.4 \pm 0.3 \ \text{keV} & 17^{+} \rightarrow 16^{+} \ \text{transition} \\ \clubsuit & Q_{0} \ (\text{K=16}) = 8.2 \pm 1.1 \ \text{b} & \text{rigid rotor model} \end{array}$

E. Lubkiewicz et al.; Z. Phys. A355 (1996), 377

Indian Institute of Technology Ropar

Rotational Band on the K=16 Isomer in ¹⁷⁸Hf

Summed coincidence spectrum from projections made on transitions in the rotational band assigned to ^{178m2}Hf.

¹⁷⁶Yb(⁹Be,α3n) ¹⁷⁸Hf 55, 60 MeV

incomplete fusion reaction 14 charged-particle detectors cover 85% of 4π

E2/M1 mixing ratios $g_K=0.52(6) v^2\pi^2 - qp$ band

S.M. Mullins et al. Phys. Lett. B393 (1997), 279

Indian Institute of Technology Ropar Hans-Jürgen V

Partial Level Scheme of ¹⁷⁸Hf

 $Q_{20} = 8.2 \pm 1.1 \text{ b}$ 4 quasi-particle state

 $Q_{20} = 7.0 \text{ b}$

$$I_x = \{(I+1/2)^2 - K^2\}^{1/2}$$
$$\hbar\omega = \frac{E(I+1) - E(I-1)}{I_x(I+1) - I_x(I-1)}$$

Collinear Laser Spectroscopy

kinetic energy spread in ion source: $\Delta E = mv \cdot \Delta v = \text{few eV}$ residual Doppler width after acceleration: $\Delta v = \frac{v_0 \Delta E}{\sqrt{2eU \cdot mc^2}} \Delta v = 60 \text{ MHz for } 60 \text{ kV}$

$$\Delta W_{HFS} = \frac{A}{2}K + B \frac{\frac{3}{4}K(K+1) - I(I+1)J(J+1)}{2I(2I-1) \cdot J(2J-1)}$$

$$K = F(F+1) - I(I+1) - J(J+1)$$

$$A = \frac{\mu_I \cdot \langle H(0) \rangle}{I \cdot J}$$

$$B = eQ_s \cdot \langle V_{ZZ}(0) \rangle$$

The single peak at 0 MHz corresponds to the ground state ¹⁷⁸Hf. The nine hyperfine resonances 0f 178m2Hf are marked by arrows.

Collinear Laser Spectroscopy

$$\Delta W_{HFS} = \frac{A}{2}K + B \frac{\frac{3}{4}K(K+1) - I(I+1)J(J+1)}{2I(2I-1) \cdot J(2J-1)}$$

$$K = F(F+1) - I(I+1) - J(J+1)$$

$$A = \frac{\mu_I \cdot \langle H(0) \rangle}{I \cdot J}$$

$$B = eQ_s \cdot \langle V_{ZZ}(0) \rangle$$

The single peak at 0 MHz corresponds to the ground state ¹⁷⁸Hf. The nine hyperfine resonances 0f 178m2Hf are marked by arrows.

$$\mu_I^{178m2} = +8.16(4) \, nm$$

strong coupling scheme:

$$Q_s = \frac{3K^2 - I(I+1)}{(I+1)(2I+3)} \cdot Q_0 \quad \to \quad Q_s \ (K=I) = \frac{I \cdot (2I-1)}{(I+1)(2I+3)} \cdot Q_0$$

$$\delta \langle r^2 \rangle^{178,178m2} = -0.059(9) fm^2$$

$$\delta \langle r^2 \rangle = \delta \langle r^2 \rangle_0 + \frac{5}{4\pi} \langle r^2 \rangle_0 \sum_\lambda \delta \big< \beta_\lambda^2 \big>$$

 $Q_s^{178m2} = +6.00(7) \ b \longrightarrow Q_0 = 7.2(1) \ b$

Partial Level Scheme of ¹⁷⁸Hf

 $Q_{20} = 7.2 \pm 0.1 \text{ b}$ $\mu_{I} = +8.16(4) \text{ n.m.}$ 4 quasi-particle state

 $Q_{20} = 7.0 \text{ b}$

$$I_x = \{(I+1/2)^2 - K^2\}^{1/2}$$
$$\hbar\omega = \frac{E(I+1) - E(I-1)}{I_x(I+1) - I_x(I-1)}$$

