PHL424: Nuclear and Particle Physics

Lectures: Hans-Jürgen Wollersheim

office: 360 phone: 0188 1242294 e-mail: h.j.wollersheim@gsi.de

Wednesday	9:55 - 10:45
Thursday	10:50 - 11:40
Friday	11:45 - 12:35
Friday(T)	8:00 - 8:50

Tutor: Kanhaiya Jha (kanhaiya.jha@iitrpr.ac.in)

Facility for Antiproton and Ion Research

Indian Institute of Technology Ropar

Hans-Jürgen Wollersheim - 2018

GSI – Helmholtzzentrum für Schwerionenforschung

Budget: 85 Mio. € (90% Bund,10% Hessen)

Employees: 1100

External Scientific Users: 1200

Large Scale Facilities: Accelerators and Experiments

Accelerator Facility

Accelerator Facility

Rare ISotope INvestigation at GSI

(Č)

The HADES experiment @ GSI

Indian Institute of Technology Ropar

Tentative outline of Nuclear Physics

✤ Gross properties of nuclei

Rutherford scattering nuclear radii, masses, and binding energies Bethe-Weizäcker mass formula angular momentum, magnetic moment

Radioactivity

- α decay
- β decay
- $\gamma-decay$

Fundamental forces

nuclear force between nucleons nuclear shell model spherical and deformed nuclei

Nuclear reactions

direct reactions fusion reaction

Literature

✤ Recommended Textbook

Supplemental Textbook

www.bookzz.org

Greek philosophers

4 building blocks

atomic hypothesis

water

<u>18th - 19th century</u> Lavoisier, Dalton, ...

put atomic hypothesis on firm basis distinction between compounds and pure elements

1896 Dmitri Mendeleev

92 building blocks (chemical elements)

 $_{1}$ H, $_{2}$ He, ... $_{92}$ U

Brief historical overview in search of the building blocks of the universe ...

1896 Henri Becquerel

discovers radioactivity

emission of radiation from atoms 3 types observed: α , β and γ

 α and β deflected in opposite direction \Rightarrow opposite charges α deflected less than $\beta \Rightarrow \alpha$ must have larger mass γ not deflected \Rightarrow uncharged

~1900 Ernest Rutherford

investigates new radiation

 α and β emissions change nature of element α 's charge = +2e α 's mass ~ 4H β radiation = electrons γ = electromagnetic radiation (photons)

<u>1911</u> Ernest Rutherford tests Thomson's model of the atom

N electrons (-e $\cdot N)$ embedded in (+e $\cdot N)$ charge uniformly distributed over atomic volume

"plum pudding model"

"... it was as incredible as if you had fired a 15-inch shell at a piece of tissue paper and it came back and hit you"

expected α 's (₂He) pushed a little to the side by charges of atom (₇₉Au) observed some α's deflected backwards to 180⁰!!

Brief historical overview in search of the building blocks of the universe

1913 Niels Bohr

planetary model of atom

all positive charges (and ~ all mass) concentrated in tiny region at the center

<u>1920</u> Francis William Aston mass spectrograph \implies measures masses of atoms

mass	charge	\vec{E} \vec{P}
He ~ 4 H	He = 2 H	D D D D D D D D D D D D D D D D D D D
C ~ 12 H	C = 6 H	
O ~ 16 H	O = 8 H	lon source
hypothesis of	of neutral parti	icle in nucleus with $m \sim m_p$
		Detector

1925 Werner Heisenberg

quantum mechanic simplest atom = H its nucleus = proton

1932 James Chadwick

discovers the neutron 3 building blocks electron + proton + neutron

Brief historical overview

in search of the building blocks of the universe

<u>1932</u> Enrico Fermi

developed the theory of β -decay

1934 Irene Joliot-Curie & Frederic Joliot

artificial radioactivity

 $^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{30}_{15}P^* + 1n$

1934 Hans Bethe

1938 Otto Hahn, Lise Meitner & Fritz Strassmann

discover nuclear fission

<u>1948</u> Maria Goeppert-Mayer & J. Hans D. Jensen

develop the nuclear shell model

Brief historical overview in search of the building blocks of the universe

<u>1953</u> Aage Niels Bohr, Ben Roy Mottelson, Leo James Rainwater

developed the collective nuclear model

1956 Frederick Reines & Clyde L. Cowan

discovery of the neutrino

<u>1983</u> Carlo Rubbia

discovery of the W and Z Boson

1998 Takaaki Kajita & Arthur B. McDonald

discovery of neutrino oscillations \implies neutrinos must have some mass

So ... Where Do We Start?

We need a point of reference to start discussing nuclear physics.

Nuclear units and physical constants

Nuclear units

- length unit: Fermi = femtometer = fm = 10⁻¹⁵ [m]
- energy unit: $MeV = 10^{6} eV = 10^{6} \cdot 1.602 \cdot 10^{-19} CV = 1.602 \cdot 10^{-13} [J]$
- mass unit:

 $1 \text{ u} = 1/12 \cdot \text{m}[^{12}\text{C}] = 931.49432 \text{ MeV/c}^2 = 1.66054 \cdot 10^{-27} \text{ [kg]}$

 $E = m \cdot c^2$

time unit:
[s] or [fm/c] ≈ 3 · 10⁻²⁴ [s]

Constant of nature relevant to nuclear physics

- speed of light in vacuum, c = 2.99792458 · 10⁸ [m/s]
- Planck's constant / $2\pi = \hbar = 6.58211889 \cdot 10^{-22}$ [MeV s] = 1.054 \cdot 10-34 [J s]
- $\hbar c = 197.3269602$ [MeV fm]
- fine structure constant (dimensionless), $\alpha = e^2/(\hbar c) = 1/137.0359976$ $\rightarrow e^2 = \alpha \cdot \hbar c = 1.4399643929$ [MeV fm]
- elementary charge, $e = 1.602 \cdot 10^{-19} [C]$ or $e = 1.1999851636 \left[\sqrt{MeV fm} \right]$
- rest energy of proton, $m_pc^2 = 938.27231$ [MeV]
- rest energy of neutron, $\dot{m}_n c^2 = 939.56563$ [MeV]
- rest energy of electron, $m_ec^2 = 0.51099906$ [MeV]
- Avogadro's number, $N_A = 6.0221367 \cdot 10^{23}$ /mol
- E p relationship: $E^2 = p^2 c^2 + m_0^2 c^4$
- Kinetic energy: $T = E m_0 c^2 = m_0 c^2 (\gamma 1)$

Albert Einstein

1879-1955 Nobel price 1921

The atom

 \clubsuit atom is a neutral system

atomic excitations ~ 1-10⁵ eV

caused by transitions between electronic states

Bohr atomic model

absorption spectrum

Bohr atomic model

emission spectrum

GSĬ

The atomic nucleus

nuclear excitations $\sim 10^5 - 10^8 \text{ eV}$

caused by transitions between nuclear states

excitations can be caused by individual nucleons or as a collective motion of the nucleus

nuclear shell model

Inside the atomic nucleus

protons and neutrons are very similar, they can be classified as the same object: the nucleon

Nucleons are quantum mechanical objects:

 They are spin ½ Fermions
Radius: r ~ 1 ⋅ 10⁻¹⁵ m, or 1 fm (fermi)
Charge: p → + e n → 0
Mass: p → 938.27 MeV/c² n → 939.56 MeV/c²
Isospin: |p > = | -1/2 > |n > = | +1/2 >

Structure of nucleons

Elementary particles of the standard model

Terminology

- $\mathbf{A}-\text{mass}$ number gives the number of nucleons in the nucleus
- \mathbf{Z} number of protons in the nucleus (atomic number)
- N number of neutrons in the nucleus

$$\mathbf{A} = \mathbf{Z} + \mathbf{N}$$

In nuclear physics, nucleus is denoted as ${}^{A}_{Z}X$, where X is the chemical element e.g. ${}^{1}_{1}H$ - hydrogen, ${}^{12}_{6}C$ - carbon, ${}^{197}_{79}Au$ - gold.

Different combinations of Z and N (or Z and A) are called nuclides

- nuclides with the same mass number **A** are called *isobars*
- nuclides with the same atomic number Z are called *isotopes*
- nuclides with the same neutron number N are called *isotones*
- nuclides with equal proton number and equal mass number, but different excited states are called *nuclear isomers*

 ${}^{17}_{7}N, {}^{17}_{8}O, {}^{17}_{9}F$ ${}^{12}_{6}C, {}^{13}_{6}C, {}^{14}_{6}C$ ${}^{13}_{6}C, {}^{14}_{7}N$ ${}^{180}_{73}Ta, {}^{180m}_{73}Ta$

The most long-lived non-ground state nuclear isomer is tantalum-180m, which has a half-life in excess of 1000 trillion years

The Chart of Nuclides - the "Playground" for Nuclear Physics

The Chart of Nuclides - the "Playground" for Nuclear Physics

The Chart of Nuclides - the "Playground" for Nuclear Physics

GSI

Questions: Chart of Nuclides

- 1. How are the *isotopes* of an element arranged on the chart?
- 2. Nuclides with the same number of neutrons are called *isotones*. How are they arranged on the chart?
- 3. Nuclides with the same mass number are called *isobars*. What would be the orientation of a line connecting an *isobaric* series?
- 4. Begin with the following radioactive parent nuclei, ²³⁵U, ²³⁸U, ²⁴⁴Pu, trace their decay processes and depict the mode and direction of each decay process on the chart. What are the final stable nuclei?

Plutonium Z=94					²²⁸ Pu	²²⁹ Pu	²³⁰ Pu	²³¹ Pu	²³² Pu	²³³ Pu	²³⁴ Pu	²³⁵Pu	²³⁶ Pu	²³⁷ Pu	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu	²⁴³ Pu	244Pu					
Nep	tunium Z=93	²¹⁹ Np	²²⁰ Np	²²¹ Np	²²² Np	²²³ Np	²²⁴ Np	²²⁵ Np	²²⁶ Np	²²⁷ Np	²²⁸ Np	²²⁹ Np	²³⁰ Np	²³¹ Np	²³² Np	²³³ Np	²³⁴ Np	²³⁵ Np	²³⁶ Np	²³⁷ Np	²³⁸ Np	²³⁹ Np	²⁴⁰ Np	²⁴¹ Np	²⁴² Np	²⁴³ Np
anium Z=92		²¹⁸ U	²¹⁹ U	²²⁰ U	²²¹ U	222U	223U	224U	225U	226U	227U	²²⁸ U	²²⁹ U	²³⁰ U	²³¹ U	²³² U	²³³ U	234U	²³⁵ U	²³⁶ U	²³⁷ U	²³⁸ U	²³⁹ U	²⁴⁰ U	²⁴¹ U	²⁴² U
²¹⁵ Pa	²¹⁶ Pa	²¹⁷ Pa	²¹⁸ Pa	²¹⁹ Pa	²²⁰ Pa	²²¹ Pa	²²² Pa	²²³ Pa	224Pa	225Pa	226Pa	²²⁷ Pa	²²⁸ Pa	²²⁹ Pa	²³⁰ Pa	²³¹ Pa	²³² Pa	²³³ Pa	²³⁴ Pa	²³⁵ Pa	²³⁶ Pa	²³⁷ Pa	²³⁸ Pa	²³⁹ Pa	²⁴⁰ Pa	²⁴¹ Pa
²¹⁴ Th	²¹⁵Th	²¹⁶ Th	²¹⁷ Th	²¹⁸ Th	²¹⁹ Th	²²⁰ Th	²²¹ Th	²²² Th	223Th	224Th	225Th	226Th	²²⁷ Th	²²⁸ Th	²²⁹ Th	²³⁰ Th	²³¹ Th	²³² Th	²³³ Th	²³⁴ Th	235Th	²³⁶ Th	²³⁷ Th	238Th	239Th	Thoriu Z=90
²¹³ Ac	²¹⁴ Ac	²¹⁵ Ac	²¹⁶ Ac	²¹⁷ Ac	²¹⁸ Ac	²¹⁹ Ac	²²⁰ Ac	²²¹ Ac	²²² Ac	²²³ Ac	²²⁴ Ac	225Ac	²²⁶ Ac	²²⁷ Ac	²²⁸ Ac	²²⁹ Ac	²³⁰ Ac	²³¹ Ac	²³² Ac	²³³ Ac	²³⁴ Ac	²³⁵ Ac	²³⁶ Ac	²³⁷ Ac	Actiniu Z=89	IM
²¹² Ra	²¹³ Ra	²¹⁴ Ra	²¹⁵Ra	²¹⁶ Ra	²¹⁷ Ra	²¹⁸ Ra	²¹⁹ Ra	²²⁰ Ra	²²¹ Ra	²²² Ra	²²³ Ra	224Ra	²²⁵Ra	²²⁶ Ra	227Ra	228Ra	229Ra	²³⁰Ra	²³¹ Ra	²³² Ra	²³³ Ra	²³⁴ Ra	235Ra	Radiu Z=88	m	
²¹¹ Fr	²¹² Fr	²¹³ Fr	²¹⁴ Fr	²¹⁵ Fr	²¹⁶ Fr	²¹⁷ Fr	²¹⁸ Fr	²¹⁹ Fr	²²⁰ Fr	²²¹ Fr	²²² Fr	²²³ Fr	²²⁴ Fr	²²⁵ Fr	²²⁶ Fr	²²⁷ Fr	228Fr	²²⁹ Fr	²³⁰ Fr	²³¹ Fr	²³² Fr	²³³ Fr	Franci Z=87	ium		
²¹⁰ Rn	²¹¹ Rn	²¹² Rn	²¹³ Rn	²¹⁴ Rn	²¹⁵Rn	²¹⁶ Rn	²¹⁷ Rn	²¹⁸ Rn	²¹⁹ Rn	²²⁰ Rn	221Rn	²²² Rn	223Rn	224Rn	225Rn	226Rn	227Rn	228Rn	229Rn	230Rn	²³¹ Rn	Rador Z=86	n			
²⁰⁹ At	²¹⁰ At	²¹¹ At	²¹² At	²¹³ At	²¹⁴ At	²¹⁵ At	²¹⁶ At	²¹⁷ At	²¹⁸ At	²¹⁹ At	²²⁰ At	²²¹ At	222At	223At	224At	225At	²²⁶ At	²²⁷ At	²²⁸ At	229At	Astatiı Z=85	ne				
²⁰⁸ Po	²⁰⁹ Po	²¹⁰ Po	²¹¹ Po	²¹² Po	²¹³ Po	²¹⁴ Po	²¹⁵ Po	²¹⁶ P0	²¹⁷ Po	²¹⁸ Po	²¹⁹ Po	²²⁰ Po	²²¹ Po	²²² Po	²²³ Po	²²⁴ P0	²²⁵ Po	²²⁶ P0	²²⁷ Po	Poloni Z=84	ium					
²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi	²¹⁰ Bi	²¹¹ Bi	²¹² Bi	²¹³ Bi	²¹⁴ Bi	²¹⁵ Bi	²¹⁶ Bi	²¹⁷ Bi	²¹⁸ Bi	²¹⁹ Bi	²²⁰ Bi	²²¹ Bi	²²² Bi	²²³ Bi	²²⁴ Bi	Bismu Z=83	th							
²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb	²¹² Pb	²¹³ Pb	²¹⁴ Pb	²¹⁵ Pb	²¹⁶ Pb	²¹⁷ Pb	²¹⁸ Pb	²¹⁹ Pb	²²⁰ Pb	Lead Z=82											

Indian Institute of Technology Ropar

Applications: Solar Abundances of Elements

open questions:

- Why is Fe more common than Au ?
- Why do the heavy elements exist and how are they produced?
- Can we explain the solar abundances of the elements?

Applications: Nuclear Astrophysics

Nuclear Fission: Energy and Engineering

Nuclear matter has exotic properties

Nuclear matter is extremely heavy

 $2.3 \cdot 10^{17} \text{ kg/m}^3$

for comparison:

- sea water: $1.0 \cdot 10^3 \text{ kg/m}^3$
- tin oxide: $1.6 \cdot 10^3 \text{ kg/m}^3$
- steel: $1.1 \cdot 10^4 \text{ kg/m}^3$
- lead: $2.5 \cdot 10^4 \text{ kg/m}^3$
- core of the sun: $1.5 \cdot 10^5 \text{ kg/m}^3$
- Although we know nuclear matter only in small portions inside atoms, it exists in nature also in big portions:
 - Neutron Stars have a diameter of typically 10 km

$$\rho = \frac{Am_p}{4/3 \,\pi \cdot R^3} = \frac{m_p}{4/3 \,\pi \cdot r_0^3} = \frac{1.66 \cdot 10^{-27} kg}{4/3 \,\pi \cdot (1.2 \cdot 10^{-15} m)^3}$$

Properties of stable nuclei

Radius & shape

- size: nuclear radius ($R = 1.2 \cdot A^{1/3}$ fm)
- shape: spherical / deformed (prolate / oblate)

Density & mass

- constant nuclear density ($\rho = 10^{17} \text{ kg/m}^3$)
- nuclear mass & valley of stability

Nuclear states

- quantum numbers spin S, parity P, magnetic moments
- shell structure: valence-nucleons, collective excitations

Nuclear reactions

- binding energy: fusion & fission, nuclear astrophysics
- special reactions: exchange / transfer

