Nuclear Shell Model

The nucleon building blocks...

Nameup quark (u) down quark (d)mass (MeV)1.7 - 3.14.1 - 5.7charge (e)+2/3-1/3spin1/21/2

The nuclear building blocks...

Themes and challenges in modern science

Complexity out of simplicity – Microscopic

How the world, with all its apparent complexity and diversity can be constructed out of a few elementary building blocks and their interactions

individual excitations of nucleons

Simplicity out of complexity – Macroscopic

How the world of complex systems can display such remarkable regularity and simplicity

The nuclear force

The nuclear force is short-range, but does not allow for compression of nuclear matter.

Yukawa – potential:

$$V_0(r) = g_s \cdot \frac{1}{r} \cdot e^{-\left(\frac{m_{\pi}c}{\hbar}\right) \cdot r}$$

ω,ρ

The deuteron

The deuteron is an ideal candidate for tests of our basic understanding of nuclear physics

Structure of the nuclear force

Structure of the nuclear force is more complex than e.g. Coulomb force. It results from its structure as residual interaction of the colorless nucleons.

spin-orbit interaction

✤ spin-spin force:

 $\sim V_{ss}(r) \cdot \overrightarrow{s_1} \cdot \overrightarrow{s_2} / \hbar^2$

different eigenvalues for triplet and singlet states

$$\frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) \qquad \qquad s = 0, \ \ell = 1$$

$$|\uparrow\uparrow\rangle$$
 $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)$ $|\downarrow\downarrow\rangle$ $s=1, \ell=0$

tensor force:

$$\frac{3}{2} \frac{(\overrightarrow{s_1} \cdot \overrightarrow{x})(\overrightarrow{s_2} \cdot \overrightarrow{x})}{r^2} - \overrightarrow{s_1} \cdot \overrightarrow{s_2}$$

small deformation of deuterium maximum magnetic dipole moments

attractive repulsive

$\sim V_T(r) \cdot \frac{\sigma}{\hbar^2} \frac{\sigma_1 \cdot r}{r^2} - \overline{s_1}$

✤ ℓ·s coupling:

 $\sim V_{\ell s}(r) \cdot \left(\vec{\ell} \cdot \vec{s}\right)$

scattering of protons on polarized protons asymmetry of counting rates

left scattering:
$$\vec{\ell} \cdot \vec{s} > 0$$

- right scattering: $\vec{\ell} \cdot \vec{s} < 0$

ℓ · s coupling:

- no net contribution in the center of nucleus
- radial dependence at the surface of the nucleus

$$V_{\ell s}(r) \propto \frac{1}{r} \cdot \frac{d\rho}{dr}$$

Many-body forces

The force on one nucleon does not only depend on the position of the other nucleons, but also on the distance between the other nucleons! These are called many-body forces.

<u>Remember</u>: Nucleons are finite-mass composite particles, can be excited to resonances. Dominant contribution Δ (1232 MeV)

The Fermi gas model

- The Fermi gas model assumes that protons and neutrons are moving freely within the nuclear volume. They are distinguishable fermions (s = ½) filling two separate potential wells obeying the Pauli principle (↑↓-pair).
- The model assumes that all fermions occupy the lowest energy states available to them to the highest occupied state (Fermi energy), and that there is no excitation across the Fermi energy (i.e. zero temperature).
- The Fermi energy is common for protons and neutrons in stable nuclei.
- If the Fermi energy for protons and neutrons are different then the β -decay transforms one type of nucleons into the other until the common Fermi energy (stability) is reached.

Number of nucleon states

Heisenberg Uncertainty Principle: $\Delta x \cdot \Delta p \ge \frac{1}{2}\hbar$

The volume of one particle in phase space: $2\pi \cdot \hbar$

The number of nucleon states in a volume V:

$$n = \frac{\iint d^3 r \, d^3 p}{(2\pi \cdot \hbar)^3} = \frac{V \cdot 4\pi \int_0^{p_{max}} p^2 \, dp}{(2\pi \cdot \hbar)^3}$$

At temperature T = 0, i.e. for the nucleus in its ground state, the lowest states will be filled up to the maximum momentum, called the Fermi momentum p_F . The number of these states follows from integration from 0 to $p_{max} = p_{F}$.

$$n = \frac{V \cdot 4\pi \int_0^{p_F} p^2 dp}{(2\pi \cdot \hbar)^3} = \frac{V \cdot 4\pi \cdot p_F^3}{(2\pi \cdot \hbar)^3 \cdot 3} \quad \rightarrow \quad n = \frac{V \cdot p_F^3}{6\pi^2 \hbar^3}$$

Since an energy state can contain two fermions of the same species, we can have

neutrons:
$$N = \frac{V \cdot (p_F^n)^3}{3\pi^2\hbar^3}$$
 protons: $Z = \frac{V \cdot (p_F^p)^3}{3\pi^2\hbar^3}$

 p_F^n is the Fermi momentum for neutrons, p_F^p for protons

Fermi momentum

Use
$$R = r_0 \cdot A^{1/3} fm$$

$$V = \frac{4\pi}{3}R^3 = \frac{4\pi}{3}r_0^3 \cdot A$$

The density of nucleons in a nucleus = number of nucleons in a volume V:

$$n = 2 \cdot \frac{V \cdot p_F^3}{6\pi^2 \hbar^3} = 2 \cdot \frac{4\pi}{3} r_0^3 \cdot A \cdot \frac{p_F^3}{6\pi^2 \hbar^3} = \frac{4A}{9\pi} \frac{r_0^3 \cdot p_F^3}{\hbar^3}$$

two spin states

Fermi momentum p_F:

$$p_F = \left(\frac{6\pi^2\hbar^3 n}{2V}\right)^{1/3} = \left(\frac{9\pi\hbar^3}{4A}\frac{n}{r_0^3}\right)^{1/3} = \left(\frac{9\pi\cdot n}{4A}\right)^{1/3}\cdot\frac{\hbar}{r_0}$$

After assuming that the proton and neutron potential wells have the same radius, we find for a nucleus with n = Z = N = A/2 the Fermi momentum p_{F} .

$$p_F = p_F^n = p_F^p = \left(\frac{9\pi}{8}\right)^{1/3} \cdot \frac{\hbar}{r_0} \approx 250 \; MeV/c$$

Fermi energy: $E_F = \frac{p_F^2}{2m_N} \approx 33 \; MeV$

The nucleons move freely inside the nucleus with large momenta

$$m_N = 938 \text{ MeV/c}^2$$
 – the nucleon mass

The difference B' between the top of the well and the Fermi level is the average binding energy per nucleon B/A = 7 - 8 MeV.

 \rightarrow The depth of the potential V₀ and the Fermi energy are independent of the mass number A:

 $V_0 = E_F + B' \approx 40 \; MeV$

Heavy nuclei have a surplus of neutrons. Since the Fermi level of the protons and neutrons in a stable nucleus have to be equal (otherwise the nucleus would enter a more energetically favorable state through β -decay) this implies that the depth of the potential well as it is experienced by the neutron gas has to be larger than of the proton gas.

Protons are therefore on average less strongly bound in nuclei than neutrons. This may be understood as a consequence of the Coulomb repulsion of the charged protons and leads to an extra term in the potential:

$$V_C = (Z-1)\frac{\alpha \cdot \hbar c}{R}$$

Protonen: 33MeV + 7MeV, Neutronen: 43MeV + 7 MeV

The Fermi gas model and the neutron star

<u>Assumption</u>: neutron star as cold neutron gas with constant density - 1.5 sun masses: $M = 3 \cdot 10^{30}$ kg (m_N = 1.67 \cdot 10^{-27} kg), number of neutrons: n = 1.8 \cdot 10^{57}

Fermi momentum p_F for cold neutron gas:

$$p_F = \left(\frac{9\pi \cdot n}{4}\right)^{1/3} \cdot \frac{\hbar}{R}$$
 R is the radius of the neutron star

Average kinetic energy per neutron:

$$\left< \frac{E_{kin}}{N} \right> = \frac{3}{5} \cdot \frac{p_F^2}{2m_N} = \left(\frac{9\pi \cdot n}{4}\right)^{2/3} \cdot \frac{3\hbar^2}{10 \cdot m_N} \cdot \frac{1}{R^2} = \frac{C}{R^2}$$

Gravitational energy of a star with constant density has an average potential energy per neutron:

$$\left\langle {^E_{pot}}/{_N} \right\rangle = -\frac{3}{5} \cdot \frac{G \cdot n \cdot m_n^2}{R} = -\frac{D}{R} \qquad G = 6.67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$$

Minimum total energy per neutron:

$$\frac{d}{dR} \langle E/N \rangle = \frac{d}{dR} \left[\langle E_{kin}/N \rangle + \langle E_{pot}/N \rangle \right] = 0$$
$$\frac{d}{dR} \left[\frac{C}{R^2} - \frac{D}{R} \right] = -\frac{2C}{R^3} + \frac{D}{R^2} = 0$$
$$R = \frac{2C}{D} \quad \rightarrow \quad R = \frac{\hbar^2 \cdot (9\pi/4)^{2/3}}{G \cdot m_N^3 \cdot n^{1/3}}$$

Shell structure in nuclei

Deviations from the Bethe-Weizsäcker mass formula:

Shell structure in nuclei

• deviations from the Bethe-Weizsäcker mass formula: large binding energies

2-neutron binding energies = 2-neutron 'separation'energies

GSİ

 $S_{2n} = BE(N,Z) - BE(N-2,Z)$

Shell structure in nuclei

Nuclei with magic numbers of neutrons/protons

> high energies of the first excited 2⁺ state

small nuclear deformations

transition probabilities measured in single particle units (spu)

Shell structure in nuclei

Maria Goeppert-Mayer

J. Hans D. Jensen

 Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure, Maria Goeppert Mayer & J. Hans D. Jensen, John Wiley & Sons, Inc., New York, 1955.)

Nuclear potential

$$\widehat{H} = \sum_{i=1}^{A} \frac{\widehat{p}_{i}^{2}}{2m_{i}} + \sum_{i < j}^{A} \widehat{V}(r_{i}, r_{j})$$

$$\widehat{H} = \sum_{i=1}^{A} \left[\frac{\widehat{p}_{i}^{2}}{2m_{i}} + \widehat{V}(r_{i}) \right] + \left[\sum_{i < j}^{A} \widehat{V}(r_{i}, r_{j}) - \sum_{i=1}^{A} \widehat{V}(r_{i}) \right]$$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) - \varepsilon\right]\Psi(r) = 0$$

$$\Psi(r) = \frac{u_{\ell}(r)}{r} \cdot Y_{\ell m}(\vartheta, \varphi) \cdot X_{m_s}$$

In the average nuclear potential V(r):

- a) harmonic oscillator
- b) square well potential
- c) Woods-Saxon potential

the nucleons move freely

Nuclear shell model

Woods-Saxon potential

 Woods-Saxon does not reproduce the correct magic numbers (2, 8, 20, 40, 70, 112, 168)_{WS} (2, 8, 20, 28, 50, 82, 126)_{exp}
 Meyer und Jensen (1949): strong spin-orbit interaction

The spin-orbit term has its origin in the relativistic description of the single particle motion inside the nucleus

Woods-Saxon potential (jj-coupling)

$$\vec{j} = \vec{\ell} + \vec{s} \quad \Rightarrow \quad \langle \ell \cdot s \rangle = \frac{1}{2} \cdot [\langle j^2 \rangle - \langle \ell^2 \rangle - \langle s^2 \rangle] \cdot \hbar^2$$
$$= \frac{1}{2} [j(j+1) - \ell(\ell+1) - s(s+1)] \cdot \hbar^2$$

The nuclear potential with spin-orbit term:

$$V(r) + \frac{\ell}{2} \cdot V_{\ell s} \quad for \quad j = \ell + 1/2$$

$$V(r) - \frac{\ell + 1}{2} V_{\ell s}$$
 for $j = \ell - 1/2$

spin-orbit interaction leads to a large splitting for large ℓ .

$$j = \ell \pm 1/2$$

$$j = \ell + 1/2$$

$$-(\ell + 1)/2 \cdot \langle V_{\ell s} \rangle$$

$$j = \ell + 1/2$$

Woods-Saxon potential

The spin-orbit term

- > lowers the $j = \ell + 1/2$ orbital from the higher oscillator shell (intruder states)
- ➤ reproduces the magic numbers large energy gaps → very stable nuclei

Important consequences:

- lowering orbitals from higher lying N+1 shell having different parity than orbitals from the N shell
- strong interaction preserves the parity. The lowered orbitals with different parity are rather pure states and do not mix within the shell

Shell model – mass dependence of single-particle energies

Ζ	Isotope	Observed J^{π}	Shell model nlj
3	⁹ Li	$(3/2^{-})$	$1p_{3/2}$
5	^{13}B	$3/2^{-}$	$1p_{3/2}$
7	17 N	$1/2^{-}$	$1p_{1/2}$
9	21 F	$5/2^+$	$1d_{5/2}$
11	25 Na	$5/2^+$	$1d_{5/2}$
13	²⁹ Al	$5/2^+$	$1d_{5/2}$
15	^{33}P	$1/2^+$	$2s_{1/2}$
17	^{37}Cl	$3/2^+$	$1d_{3/2}$
19	^{41}K	$3/2^{+}$	$1d_{3/2}$
21	^{45}Sc	$7/2^{-}$	$1f_{7/2}$
23	49 Va	$7/2^{-}$	$1f_{7/2}$
25	^{53}Mn	$7/2^{-}$	$1f_{7/2}$
27	57 Co	$7/2^{-}$	$1f_{7/2}$
29	61 Cu	$3/2^{-}$	$2p_{3/2}$
31	65 Ga	$3/2^{-}$	$2p_{3/2}$
33	^{69}As	$(5/2^{-})$	$1f_{5/2}$
35	$^{73}\mathrm{Br}$	$(3/2^{-})$	$1f_{5/2}$
		· · · ·	• • / =

Ground state spin and parity:

Every orbital has 2j+1 magnetic sub-states, completely filled orbitals have spin J=0, they do not contribute to the nuclear spin.

For a nucleus with one nucleon outside a completely occupied orbital the nuclear spin is given by the single nucleon.

$$n \ \ell \ \mathbf{j} \to \mathbf{J}$$
$$(-)^{\ell} = \pi$$

z Vws	SBK N
Is 1/2 (2)	$1s^{1/2}$ (2)
	(2)
$1p \frac{1}{2}(2)$	$1p^{1/2}$ (2) $1n^{3/2}$ (4)
1d ⁵ /2 (6)	$1d^{5}/_{2}$ — (6)
2s 1/2 (2)	Zs 1/2 (2)
(1d ³ /2(4)	(20) $1d^{3/2}$ (4)
1f ⁷ /2(8)	$1f^{7_{l_2}}$ (8)
$\frac{2p {}^{1}\!{}^{1}\!{}_{2}(2)}{1f {}^{5}\!{}_{2}(6)}$	$2p \frac{1}{2} \frac$
1g 9/2(10)	$1 g^{9} /_{2}$ (10)
$- 1g^{7/2}(8)$	2 d 5/2 $-$ (6)
$\frac{3 \text{ s} \frac{1}{2} (2)}{2 \text{ d} \frac{3}{2} (4)}$ $\frac{3 \text{ s} \frac{1}{2} (2)}{1 \text{ h} \frac{11}{2} (12)}$	$\begin{array}{c} 35 & 72 \\ 2 & 3_{12} \\ 1 & 1^{11}_{12} \end{array} \underbrace{(2)}_{(4)} \\ (4) \\ (12) \\ 1 & 2^{11}_{12} \\ (2) \\ (2$
((82) 2 c 1/2 (2)
$\frac{1i {}^{13}{}^{12}(14)}{2f {}^{7}{}^{2}(8)} \\ \frac{1h {}^{9}{}^{2}(10)}{1h {}^{9}{}^{2}(10)}$	$\begin{array}{c} 11 & 13/2 \\ 1h & 9/2 \\ 2f & 7/2 \end{array} $ (14) (10) (10) (8)
3p 3/2 (4) 2f 5/2 (6)	$\begin{array}{c} 3 p \frac{1}{2} \\ 2 f \frac{5}{2} \\ 3 p \frac{3}{2} \end{array} = \begin{array}{c} (2) \\ (6) \\ (4) \end{array}$
3p ¹ /2(2)	
	$1 j^{1/2} = (10)$ $1 j^{1/2} = (12)$ 2 n g/2 = (10)
	$3 d \frac{1}{2}$ (6)
	$2 g \frac{7}{2} $ (8) $4 s \frac{5}{2} $ (2)

F	 Т

⁷ ₄ Be
$^{17}_{9}F$
⁶³ 28Ni
⁶¹ 29Cu
$^{91}_{40}Zr$
¹²³ ₅₁ Sb
¹⁵⁹ ₆₅ Tb
¹⁸³ 77 73
¹⁹⁹ 71
²⁰⁹ 82Pb

$\overrightarrow{\mu_j} = g_\ell \cdot \vec{\ell} + g_s \cdot \vec{s} = g_j \cdot \vec{j}$ $\overrightarrow{\mu_j} = \left[\left(g_\ell \cdot \vec{\ell} + g_s \cdot \vec{s} \right) \cdot \frac{\vec{j}}{|j|} \right] \cdot \frac{\vec{j}}{|j|}$

with $\vec{\ell}^2 = (\vec{j} - \vec{s})^2 = \vec{j}^2 - 2 \cdot \vec{j} \cdot \vec{s} + \vec{s}^2$ $\vec{s}^2 = (\vec{j} - \vec{\ell})^2 = \vec{j}^2 - 2 \cdot \vec{j} \cdot \vec{\ell} + \vec{\ell}^2$

$$\vec{\mu}_{j} = \frac{g_{\ell} \cdot \{j(j+1) + \ell(\ell+1) - 3/4\} + g_{s} \cdot \{j(j+1) - \ell(\ell+1) + 3/4\}}{2 \cdot j(j+1)} \cdot \vec{j}$$

$$g_j = \frac{1}{2} \cdot (g_\ell + g_s) + \frac{1}{2} \cdot \frac{\ell(\ell+1) - s(s+1)}{2j(j+1)} \cdot (g_\ell - g_s)$$

experiment

-0,283

+0,719

-1,894

+4,793

> magnetic moments:

$$\langle \mu_z \rangle = \begin{cases} \left[g_\ell \cdot \left(j - \frac{1}{2} \right) + \frac{1}{2} \cdot g_s \right] \cdot \mu_N & \text{for} \quad j = \ell + 1/2 \\ \frac{j}{j+1} \cdot \left[g_\ell \cdot \left(j + \frac{3}{2} \right) - \frac{1}{2} \cdot g_s \right] \cdot \mu_N & \text{for} \quad j = \ell - 1/2 \end{cases}$$

➤ g-factor of nukleons:

proton:	$g_{\ell} = 1;$	$g_s = +5.585$
neutron:	$g_{\ell} = 0;$	$g_s = -3.82$

proton:

neutron:

$$\langle \mu_z \rangle = \begin{cases} (j+2.293) \cdot \mu_N & for \quad j = \ell + 1/2 \\ (j-2.293) \cdot \frac{j}{j+1} \cdot \mu_N & for \quad j = \ell - 1/2 \end{cases}$$

$$\langle \mu_z \rangle = \begin{cases} -1.91 \cdot \mu_N & for \quad j = \ell + 1/2 \\ +1.91 \cdot \frac{j}{j+1} \cdot \mu_N & for \quad j = \ell - 1/2 \end{cases}$$

The three structures of the shell model

Evolution of nuclear structure (as a function of nucleon number)

Systematics of the Te isotopes (Z=52)

