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Themes and challenges in modern science

 Complexity out of simplicity – Microscopic
How the world, with all its apparent complexity and diversity can be constructed 
out of a few elementary building blocks and their interactions

 Simplicity out of complexity – Macroscopic

How the world of complex systems can display such remarkable regularity and 
simplicity

vibration                         rotation                         fission

individual excitations 
of nucleons
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The nuclear force

The nuclear force is short-range, but does not allow for 
compression of nuclear matter.

Yukawa – potential:

𝑉𝑉0 𝑟𝑟 = 𝑔𝑔𝑠𝑠 �
1
𝑟𝑟
� 𝑒𝑒−

𝑚𝑚𝜋𝜋𝑐𝑐
ℏ �𝑟𝑟

π

σ

ω,ρ

m(π) ≈ 140 MeV/c2

m(σ) ≈ 500-600 MeV/c2

m(ω) ≈ 784 MeV/c2
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The deuteron

mass (MeV/c2) 1875.61

charge (e) 1

Iπ 1+

binding energy (MeV) 2.2245

magnetic moment (μN) 0.8574

quadrupole moment (b) 0.0029

0.8798 μN = μS (12𝐻𝐻) → the deuteron can not be a pure s state! ~ 96% s and 4% d.

not spherical consistent with s/d-ratio = 96/4

n
p

The deuteron is an ideal candidate for  tests of our basic understanding of nuclear physics
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Structure of the nuclear force

Structure of the nuclear force is more complex than e.g. Coulomb force. It results from its 
structure as residual interaction of the colorless nucleons.

central force V0(r)

spin dependent central force

not central tensor force

spin-orbit (ℓ·s) term

results from deuteron properties (96% 3S1 state)

results from neutron-proton scattering (spin-spin interaction)

results from deuteron properties (4% 3D1 state)

results from scattering of polarized protons (left/right asymmetry)

2𝑆𝑆+1𝐿𝐿𝐽𝐽

2𝑆𝑆+1𝐿𝐿𝐽𝐽

𝑉𝑉 𝑟𝑟 = 𝑉𝑉0 𝑟𝑟

+𝑉𝑉𝑠𝑠𝑠𝑠 𝑟𝑟 � 𝑠𝑠1 � 𝑠𝑠2 �
1
ℏ2

+𝑉𝑉𝑇𝑇 𝑟𝑟 �
3
ℏ2

𝑠𝑠1 � �⃗�𝑥 𝑠𝑠2 � �⃗�𝑥
𝑟𝑟2 − 𝑠𝑠1 � 𝑠𝑠2

+𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 � 𝑠𝑠1 + 𝑠𝑠2 � ℓ �
1
ℏ2

central potential 
spin-spin interaction

tensor force

spin-orbit interaction
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Structure of the nuclear force

 spin-spin force:

~𝑉𝑉𝑠𝑠𝑠𝑠 𝑟𝑟 � 𝑠𝑠1 � 𝑠𝑠2 /ℏ2

1
2
� ⟩↑↓ − | ⟩↓↑

| ⟩↑↑ | ⟩↓↓
1
2
� ⟩↑↓ + | ⟩↓↑ s = 1, ℓ = 0

s = 0, ℓ = 1

different eigenvalues for 
triplet and singlet states

 tensor force:

~𝑉𝑉𝑇𝑇 𝑟𝑟 �
3
ℏ2

𝑠𝑠1 � �⃗�𝑥 𝑠𝑠2 � �⃗�𝑥
𝑟𝑟2

− 𝑠𝑠1 � 𝑠𝑠2
small deformation of deuterium 
maximum magnetic dipole moments 

�⃗�𝑥

�⃗�𝑥

attractive   repulsive

 ℓ·s coupling:

~𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 � ℓ � 𝑠𝑠 scattering of protons on polarized protons 
asymmetry of counting rates
- left scattering:   ℓ � 𝑠𝑠 > 0
- right scattering: ℓ � 𝑠𝑠 < 0

ℓ·s coupling: 
- no net contribution in the center of nucleus
- radial dependence at the surface of the nucleus 𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ∝

1
𝑟𝑟
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟
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Many-body forces

internal forces governing a 3He nucleus

Remember: Nucleons are finite-mass composite particles, can be excited to resonances. Dominant contribution  Δ(1232 MeV)

tidal effects lead to 3-body forces 
in earth-sun-moon system

The force on one nucleon does not only depend on 
the position of the other nucleons, but also on the 
distance between the other nucleons! These are 
called many-body forces.
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The Fermi gas model

neutron potential

proton potential

protonsneutrons

• The Fermi gas model assumes that protons and neutrons are moving freely within the 
nuclear volume. They are distinguishable fermions (s = ½) filling two separate potential 
wells obeying the Pauli principle (↑↓-pair).

• The model assumes that all fermions occupy the lowest energy states available to them to 
the highest occupied state (Fermi energy), and that there is no excitation across the Fermi 
energy (i.e. zero temperature).

• The Fermi energy is common for protons and neutrons in stable nuclei.
• If the Fermi energy for protons and neutrons are different then the β-decay transforms one 

type of nucleons into the other until the common Fermi energy (stability) is reached.
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Number of nucleon states

Heisenberg Uncertainty Principle:    ∆𝑥𝑥 � ∆𝑝𝑝 ≥ 1
2
ℏ

states in phase space

The volume of one particle in phase space: 2𝜋𝜋 � ℏ

The number of nucleon states in a volume V:

𝑛𝑛 =
∬𝑑𝑑3𝑟𝑟 𝑑𝑑3𝑝𝑝

2𝜋𝜋 � ℏ 3 =
𝑉𝑉 � 4𝜋𝜋 ∫0

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2 𝑑𝑑𝑝𝑝
2𝜋𝜋 � ℏ 3

At temperature T = 0, i.e. for the nucleus in its ground state, the lowest states will be filled 
up to the maximum momentum, called the Fermi momentum pF. The number of these states 
follows from integration from 0 to pmax = pF.

𝑛𝑛 =
𝑉𝑉 � 4𝜋𝜋 ∫0

𝑝𝑝𝐹𝐹 𝑝𝑝2𝑑𝑑𝑝𝑝
2𝜋𝜋 � ℏ 3 =

𝑉𝑉 � 4𝜋𝜋 � 𝑝𝑝𝐹𝐹3

2𝜋𝜋 � ℏ 3 � 3
→ 𝑛𝑛 =

𝑉𝑉 � 𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3

Since an energy state can contain two fermions of the same species, we can have

𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠: 𝑁𝑁 =
𝑉𝑉 � 𝑝𝑝𝐹𝐹𝑛𝑛 3

3𝜋𝜋2ℏ3 𝑝𝑝𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠: 𝑍𝑍 =
𝑉𝑉 � 𝑝𝑝𝐹𝐹

𝑝𝑝 3

3𝜋𝜋2ℏ3

𝑝𝑝𝐹𝐹𝑛𝑛 is the Fermi momentum for neutrons, 𝑝𝑝𝐹𝐹
𝑝𝑝 for protons
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Fermi momentum

Use 𝑅𝑅 = 𝑟𝑟0 � 𝐴𝐴 ⁄1 3 𝑓𝑓𝑓𝑓 𝑉𝑉 = 4𝜋𝜋
3
𝑅𝑅3 = 4𝜋𝜋

3
𝑟𝑟03 � 𝐴𝐴

The density of nucleons in a nucleus = number of nucleons in a volume V:

𝑛𝑛 = 2 �
𝑉𝑉 � 𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3
= 2 �

4𝜋𝜋
3
𝑟𝑟03 � 𝐴𝐴 �

𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3
=
4𝐴𝐴
9𝜋𝜋

𝑟𝑟03 � 𝑝𝑝𝐹𝐹3

ℏ3

Fermi momentum pF:

two spin states

𝑝𝑝𝐹𝐹 =
6𝜋𝜋2ℏ3𝑛𝑛
2𝑉𝑉

1/3

=
9𝜋𝜋ℏ3

4𝐴𝐴
𝑛𝑛
𝑟𝑟03

1/3

=
9𝜋𝜋 � 𝑛𝑛
4𝐴𝐴

1/3

�
ℏ
𝑟𝑟0

After assuming that the proton and neutron potential wells have the same radius, we find for 
a nucleus with n = Z = N = A/2 the Fermi momentum pF.

𝑝𝑝𝐹𝐹 = 𝑝𝑝𝐹𝐹𝑛𝑛 = 𝑝𝑝𝐹𝐹
𝑝𝑝 =

9𝜋𝜋
8

1/3

�
ℏ
𝑟𝑟0
≈ 250 𝑀𝑀𝑒𝑒𝑉𝑉/𝑐𝑐

Fermi energy:   𝐸𝐸𝐹𝐹 = 𝑝𝑝𝐹𝐹
2

2𝑚𝑚𝑁𝑁
≈ 33 𝑀𝑀𝑒𝑒𝑉𝑉

The nucleons move freely inside 
the nucleus with large momenta

mN = 938 MeV/c2 – the nucleon mass
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Nucleon potential

The difference B´ between the top of the well and 
the Fermi level is the average binding energy per 
nucleon B/A = 7 – 8 MeV.

→ The depth of the potential V0 and the Fermi 
energy are independent of the mass number A:

𝑉𝑉0 = 𝐸𝐸𝐹𝐹 + 𝐵𝐵𝐵 ≈ 40 𝑀𝑀𝑒𝑒𝑉𝑉

Heavy nuclei have a surplus of neutrons. Since the Fermi level of the protons and neutrons in 
a stable nucleus have to be equal (otherwise the nucleus would enter a more energetically 
favorable state through β-decay) this implies that the depth of the potential well as it is 
experienced by the neutron gas has to be larger than of the proton gas.

Protons are therefore on average less strongly bound in nuclei than neutrons. This may be 
understood as a consequence of the Coulomb repulsion of the charged protons and leads to an 
extra term in the potential:

𝑉𝑉𝐶𝐶 = 𝑍𝑍 − 1
𝛼𝛼 � ℏ𝑐𝑐
𝑅𝑅

Protonen: 33MeV + 7MeV, Neutronen: 43MeV + 7 MeV
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The Fermi gas model and the neutron star

radius of a neutron star ~ 10.7 km

Assumption: neutron star as cold neutron gas with constant density
- 1.5 sun masses: M = 3·1030 kg (mN = 1.67·10-27 kg), number of neutrons: n = 1.8·1057

Fermi momentum pF for cold neutron gas:

𝑝𝑝𝐹𝐹 =
9𝜋𝜋 � 𝑛𝑛

4

1/3

�
ℏ
𝑅𝑅

R is the radius of the neutron star

Average kinetic energy per neutron:

�𝐸𝐸𝑘𝑘𝑘𝑘𝑛𝑛
𝑁𝑁 =

3
5
�
𝑝𝑝𝐹𝐹2

2𝑓𝑓𝑁𝑁
=

9𝜋𝜋 � 𝑛𝑛
4

2/3

�
3ℏ2

10 � 𝑓𝑓𝑁𝑁
�

1
𝑅𝑅2

=
𝐶𝐶
𝑅𝑅2

Gravitational energy of a star with constant density has an average potential energy per neutron:

�𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁 = −

3
5
�
𝐺𝐺 � 𝑛𝑛 � 𝑓𝑓𝑛𝑛

2

𝑅𝑅
= −

𝐷𝐷
𝑅𝑅

𝐺𝐺 = 6.67 � 10−11
𝑓𝑓3

𝑘𝑘𝑔𝑔 � 𝑠𝑠2

Minimum total energy per neutron:
𝑑𝑑
𝑑𝑑𝑅𝑅 𝐸𝐸/𝑁𝑁 =

𝑑𝑑
𝑑𝑑𝑅𝑅 𝐸𝐸𝑘𝑘𝑘𝑘𝑛𝑛/𝑁𝑁 + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝/𝑁𝑁 = 0

𝑑𝑑
𝑑𝑑𝑅𝑅

𝐶𝐶
𝑅𝑅2 −

𝐷𝐷
𝑅𝑅 = −

2𝐶𝐶
𝑅𝑅3 +

𝐷𝐷
𝑅𝑅2 = 0

𝑅𝑅 =
2𝐶𝐶
𝐷𝐷

→ 𝑅𝑅 =
ℏ2 � 9𝜋𝜋/4 2/3

𝐺𝐺 � 𝑓𝑓𝑁𝑁
3 � 𝑛𝑛1/3

http://3.bp.blogspot.com/-x1Q-8gT6sQg/Tbcsem4K-ZI/AAAAAAAAAFI/u0y9SS8lv0k/s1600/neutron-star-magnetar-ga.jpg
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Shell structure in nuclei

28
28 50

50

82

82
126

Neutron
Proton

Deviations from the Bethe-Weizsäcker mass formula:

mass number A

B/
A 

(M
eV

 p
er

 n
uc

le
on

)

2
4
2 He

8
16
8O

20
40
20Ca

28
48
20Ca

126
208
82 Pb

especially stable:
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Shell structure in nuclei

• deviations from the Bethe-Weizsäcker mass formula: large binding energies

208Pb

132Sn
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2-neutron binding energies = 2-neutron ´separation´energies

Sn

Ba

Sm
Hf

Pb

5

7

9

11

13

15

17

19

21

23

25

52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132

Neutron Number

S(
2n

) M
eV

N = 82

N = 84

N = 126

𝑆𝑆2𝑛𝑛 = 𝐵𝐵𝐸𝐸 𝑁𝑁,𝑍𝑍 − 𝐵𝐵𝐸𝐸 𝑁𝑁 − 2,𝑍𝑍
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Shell structure in nuclei

 high energies of the first excited 2+ state

 small nuclear deformations
transition probabilities measured in single particle units (spu)

Nuclei with magic numbers 
of neutrons/protons 𝐸𝐸21+

𝐵𝐵 𝐸𝐸2; 21+ → 0+
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Shell structure in nuclei

𝐸𝐸21+

𝐵𝐵 𝐸𝐸2; 21+ → 0+

Maria Goeppert-Mayer        J. Hans D. Jensen
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Nuclear potential

�𝐻𝐻 = �
𝑘𝑘=1

𝐴𝐴
�̂�𝑝𝑘𝑘2

2𝑓𝑓𝑘𝑘
+ �

𝑘𝑘<𝑗𝑗

𝐴𝐴

�𝑉𝑉 𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑗𝑗

�𝐻𝐻 = �
𝑘𝑘=1

𝐴𝐴
�̂�𝑝𝑘𝑘2

2𝑓𝑓𝑘𝑘
+ �𝑉𝑉 𝑟𝑟𝑘𝑘 + �

𝑘𝑘<𝑗𝑗

𝐴𝐴

�𝑉𝑉 𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑗𝑗 −�
𝑘𝑘=1

𝐴𝐴

�𝑉𝑉 𝑟𝑟𝑘𝑘

−
ℏ2

2𝑓𝑓
𝛻𝛻2 + 𝑉𝑉 𝑟𝑟 − 𝜀𝜀 Ψ 𝑟𝑟 = 0

Ψ 𝑟𝑟 =
𝑛𝑛ℓ 𝑟𝑟
𝑟𝑟

� 𝑌𝑌ℓ𝑚𝑚 𝜗𝜗,𝜑𝜑 � Χ𝑚𝑚𝑠𝑠

𝑉𝑉 𝑟𝑟 =
−𝑉𝑉0

1 + 𝑒𝑒 ⁄𝑟𝑟−𝑅𝑅0 𝑎𝑎

In the average nuclear potential V(r):

a) harmonic oscillator
b) square well potential
c) Woods-Saxon potential

the nucleons move freely
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Nuclear shell model

�𝐻𝐻 = �
𝑘𝑘=1

𝐴𝐴
�̂�𝑝𝑘𝑘2

2𝑓𝑓𝑘𝑘
+ �𝑉𝑉 𝑟𝑟𝑘𝑘

harmonic
oscillator

square-well
potential

realistic potential
+ spin-orbit coupling

V

V0

0
r

1s

1p

1d
2s

1g

2p

2d
1h/3s

2f
1i
3p

2g
3d
4s

1d

ω 0

ω 1

ω 2

ω 3

ω 4

ω 5

ω 6

2

8

20

40

70

112

168

1s1/2

1p1/2
1p3/2

1d5/2
1d3/2
2g1/2

1f7/2
1f5/2
3p3/2
2p1/2
1g9/2
1g7/2
2d5/2
2d1/2
1h11/2
3s1/2
1h9/2
2f7/2
2p3/2
1i13/2
3p1/2
2f5/2
2g9/2
1i11/2
3d5/2
2g7/2
3d3/2
4s1/2

2

8

20
28

50

82

126

168
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Woods-Saxon potential

The spin-orbit term has its origin in the relativistic description of the single particle motion inside the nucleus

( )
dr

rdV

( )rV r

Woods-Saxon does not reproduce the correct magic numbers
(2, 8, 20, 40, 70, 112, 168)WS (2, 8, 20, 28, 50, 82, 126)exp

Meyer und Jensen (1949): strong spin-orbit interaction

−
ℏ2

2𝑓𝑓
𝛻𝛻2 + 𝑉𝑉 𝑟𝑟 + 𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 � ℓ � 𝑠𝑠 − 𝜀𝜀 Ψ 𝑟𝑟 = 0

𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ~ − 𝜆𝜆 �
1
𝑟𝑟
�
𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟

𝑓𝑓𝑚𝑚𝑛𝑛 𝜆𝜆 > 0

𝐽𝐽

𝑠𝑠
ℓ
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Woods-Saxon potential (jj-coupling)

The nuclear potential with spin-orbit term:

spin-orbit interaction leads to a large splitting for large ℓ.

𝚥𝚥 = ℓ + 𝑠𝑠 ⇒ ℓ � 𝑠𝑠 =
1
2
� 𝑗𝑗2 − ℓ2 − 𝑠𝑠2 � ℏ2

=
1
2 𝑗𝑗 𝑗𝑗 + 1 − ℓ ℓ+ 1 − 𝑠𝑠 𝑠𝑠 + 1 � ℏ2

𝑉𝑉 𝑟𝑟 +
ℓ
2
� 𝑉𝑉ℓ𝑠𝑠 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ + 1/2

𝑉𝑉 𝑟𝑟 −
ℓ + 1

2
𝑉𝑉ℓ𝑠𝑠 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ − 1/2

𝑗𝑗 = ℓ ± 1/2

𝑗𝑗 = ℓ − 1/2

𝑗𝑗 = ℓ + 1/2

− ℓ + 1 /2 � 𝑉𝑉ℓ𝑠𝑠

ℓ/2 � 𝑉𝑉ℓ𝑠𝑠
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Woods-Saxon potential

The spin-orbit term

 lowers the j = ℓ+1/2 orbital from the
higher oscillator shell (intruder states)

 reproduces the magic numbers
large energy gaps → very stable nuclei

Important consequences:
 lowering orbitals from higher lying N+1 shell

having different parity than orbitals from the N shell

 strong interaction preserves the parity. The lowered orbitals 
with different parity are rather pure states and do not mix 
within the shell

ℓ − 1/2

ℓ + 1/2

∆𝐸𝐸ℓ𝑠𝑠 =
2ℓ + 1

2 � ℏ2 � 𝑉𝑉ℓ𝑠𝑠
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Shell model – mass dependence of single-particle energies

Mass dependence of the neutron
energies:

 number  of neutrons in each level:

𝐸𝐸~𝑅𝑅−2

2 � 2ℓ + 1
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Success of the extreme single-particle shell model

 Ground state spin and parity:

Every orbital has 2j+1 magnetic sub-states, 
completely filled orbitals have spin J=0,
they do not contribute to the nuclear spin.

For a nucleus with one nucleon outside a 
completely occupied orbital the nuclear spin
is given by the single nucleon.

n ℓ j → J
(-)ℓ = π



Hans-Jürgen Wollersheim - 2020

Success of the extreme single-particle shell model

4
7𝐵𝐵𝑒𝑒 1p3/2 3/2-

9
17𝐹𝐹 1d5/2 5/2+

28
63𝑁𝑁𝑚𝑚 1f5/2 5/2-

29
61𝐶𝐶𝑛𝑛 2p3/2 3/2-

40
91𝑍𝑍𝑟𝑟 2d5/2 5/2+

51
123𝑆𝑆𝑆𝑆 1g7/2 7/2+

65
159𝑇𝑇𝑆𝑆 1h11/2 11/2-

73
183𝑇𝑇𝑇𝑇 1h11/2 11/2-

81
199𝑇𝑇𝑇𝑇 3s1/2 1/2+

82
209𝑃𝑃𝑆𝑆 2g9/2 9/2+



Hans-Jürgen Wollersheim - 2020

Success of the extreme single-particle shell model

Magnetic moments:
The g-factor gj is given by:

with 

Simple relation for the g-factor 
of single-particle states  

𝜇𝜇𝑗𝑗 = 𝑔𝑔ℓ � ℓ + 𝑔𝑔𝑠𝑠 � 𝑠𝑠 = 𝑔𝑔𝑗𝑗 � 𝚥𝚥 ⇒ 𝜇𝜇𝑗𝑗 = 𝑔𝑔ℓ � ℓ + 𝑔𝑔𝑠𝑠 � 𝑠𝑠 �
𝚥𝚥
𝑗𝑗

�
𝚥𝚥
𝑗𝑗

ℓ2 = 𝚥𝚥 − 𝑠𝑠 2 = 𝚥𝚥2 − 2 � 𝚥𝚥 � 𝑠𝑠 + 𝑠𝑠2 𝑠𝑠2 = 𝚥𝚥 − ℓ
2

= 𝚥𝚥2 − 2 � 𝚥𝚥 � ℓ + ℓ2

�⃗�𝜇𝑗𝑗 =
𝑔𝑔ℓ � 𝑗𝑗 𝑗𝑗 + 1 + ℓ ℓ+ 1 − 3/4 + 𝑔𝑔𝑠𝑠 � 𝑗𝑗 𝑗𝑗 + 1 − ℓ ℓ+ 1 + 3/4

2 � 𝑗𝑗 𝑗𝑗 + 1 � 𝚥𝚥

𝑔𝑔𝑗𝑗 =
1
2 � 𝑔𝑔ℓ + 𝑔𝑔𝑠𝑠 +

1
2 �

ℓ ℓ+ 1 − 𝑠𝑠 𝑠𝑠 + 1
2𝑗𝑗 𝑗𝑗 + 1 � 𝑔𝑔ℓ − 𝑔𝑔𝑠𝑠

𝜇𝜇
𝜇𝜇𝑁𝑁

= 𝑔𝑔𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = 𝑔𝑔ℓ ±
𝑔𝑔𝑠𝑠 − 𝑔𝑔ℓ
2ℓ + 1 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ ± 1

nucleus   state        Jπ model    experiment
μ/μN
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Success of the extreme single-particle shell model

 magnetic moments:

 g-factor of nukleons:
proton:       gℓ = 1;     gs = +5.585 
neutron:     gℓ = 0;     gs = -3.82 

proton:

neutron:

𝜇𝜇𝑧𝑧 =
𝑔𝑔ℓ � 𝑗𝑗 −

1
2

+
1
2
� 𝑔𝑔𝑠𝑠 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ + 1/2

𝑗𝑗
𝑗𝑗 + 1 � 𝑔𝑔ℓ � 𝑗𝑗 +

3
2 −

1
2 � 𝑔𝑔𝑠𝑠 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ − 1/2

𝜇𝜇𝑧𝑧 =
𝑗𝑗 + 2.293 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ + 1/2

𝑗𝑗 − 2.293 �
𝑗𝑗

𝑗𝑗 + 1 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ − 1/2

𝜇𝜇𝑧𝑧 =
−1.91 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ + 1/2

+1.91 �
𝑗𝑗

𝑗𝑗 + 1 � 𝜇𝜇𝑁𝑁 𝑓𝑓𝑛𝑛𝑟𝑟 𝑗𝑗 = ℓ − 1/2
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Magnetic moments: Schmidt lines

magnetic moments: neutron  

magnetic moments: proton
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The three structures of the shell model
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Systematics of the Te isotopes (Z=52)

Neutron number 68 70        72       74       76        78          80        82

Val. Neutr. number 14 12        10         8         6          4            2          0
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