Shape parameterization

(Č)

Quadrupole deformation (λ =2)

$$R(\theta,\phi) = R_0 \cdot \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \cdot Y_{\lambda\mu}(\theta,\phi)\right]$$

There are five independent real parameters,

- α_{20} indicates the stretching of the 3-axis with respect to the 1- and 2-axes
- α_{22} determines the difference in length between the 1- and 2-axes
- three Euler angles, which determine the orientation of the principle axis system (1,2,3) with respect to the laboratory frame (x,y,z)

Hill - Wheeler introduced the (β, γ) – parameters:

$$a_{20} = \beta_2 \cos \gamma$$
$$a_{22} = \frac{1}{\sqrt{2}} \beta_2 \sin \gamma$$

Quadrupole deformation (λ =2)

$$R(\theta,\phi) = R_0 \cdot \left\{ 1 + \beta \cdot \cos \gamma \cdot Y_{20}(\theta,\phi) + \frac{1}{\sqrt{2}} \cdot \beta \cdot \sin \gamma \cdot \left[Y_{22}(\theta,\phi) + Y_{2-2}(\theta,\phi) \right] \right\}$$
$$R(\theta,\phi) = R_0 \cdot \left\{ 1 + \beta \cdot \sqrt{\frac{5}{16\pi}} \left[\cos \gamma \cdot \left(3 \cdot \cos^2 \theta - 1 \right) + \sqrt{3} \cdot \sin \gamma \cdot \sin^2 \theta \cdot \cos 2\phi \right] \right\}$$

Consider the nuclear shapes in the principal axis system $(1, 2, 3) \equiv (x', y', z')$

$$R_{1} = R_{x'} = R\left(\frac{\pi}{2}, 0\right) = R_{0} \cdot \left\{1 + \beta \cdot \sqrt{\frac{5}{16\pi}} \left[-\cos\gamma + \sqrt{3} \cdot \sin\gamma\right]\right\}$$
$$R_{2} = R_{y'} = R\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = R_{0} \cdot \left\{1 + \beta \cdot \sqrt{\frac{5}{16\pi}} \left[-\cos\gamma - \sqrt{3} \cdot \sin\gamma\right]\right\}$$
$$R_{3} = R_{z'} = R(0,0) = R_{0} \cdot \left\{1 + \beta \cdot \sqrt{\frac{5}{16\pi}} \cdot 2 \cdot \cos\gamma\right\}$$

$$R_k(\theta,\phi) = R_0 \cdot \left\{ 1 + \beta \cdot \sqrt{\frac{5}{4\pi}} \cdot \cos\left(\gamma - \frac{2\pi \cdot k}{3}\right) \right\} \quad for \ k = 1, 2, 3$$

(Č

(β,γ) coordinates

$$R_k(\theta,\phi) = R_0 \cdot \left\{ 1 + \beta \cdot \sqrt{\frac{5}{4\pi}} \cdot \cos\left(\gamma - \frac{2\pi \cdot k}{3}\right) \right\} \quad \text{for } k = 1, 2, 3$$

• At $\gamma = 0^{\circ}$ the nucleus is elongated along the z'axis, but the x'and y'axes are equal (**prolate shape** for x'= y') • As we increase γ , the x'axis grows at the expense of the y'and z'axes through a region of **triaxial shapes** with three unequal axis, until axial symmetry is again reached at $\gamma = 60^{\circ}$, but now with the z'and x'axis equal in length. These two axes are longer than the y'axis (**oblate shape** for x'= z')

• This pattern is **repeated: every 60**^o axial symmetry repeated and prolate and oblate shapes alternate.

 $\cos[\gamma - 2\pi k/3]$

(β,γ) coordinates

Figure: The (β, γ) plane is divided into six equivalent parts by the symmetries:

the sector 0^0 and 60^0 contains all shapes uniquely, i.e. **triaxial shapes**

the types of shapes encountered along the axis: e.g. prolate x´= y´implies prolate shapes with the z´axis as the long axis and the two other axis x´and y´equal.

 \rightarrow various nuclear shapes – **prolate or oblate** – in the (β , γ) plane **are repeated every 60**⁰. Because the axis orientations are different, the associated Euler angles also differ.

In conclusion, the same physical shape (including ist orientation in space) can be represented by different sets of deformation parameters (β,γ) and Euler angles!

(β,γ) coordinates

X

Collective excitation E(4⁺) / E(2⁺): rotational vs vibrational

(Č)

GSI

$$H_{coll} = T_{vib} + T_{rot} + V_{coll} = \frac{1}{2} \sum_{\lambda\mu} B_{\lambda} \left| \dot{\alpha}_{\lambda\mu} \right|^{2} + \frac{1}{2} \sum_{k=1}^{3} \Im_{k} \cdot \omega_{k}^{2} + \frac{1}{2} \sum_{\lambda\mu} C_{\lambda} \left| \alpha_{\lambda\mu} \right|^{2}$$

Quadrupole (λ =2) motion

$$H = \frac{1}{2}B \cdot (\dot{\beta}^2 + \beta^2 \cdot \dot{\gamma}^2) + \frac{1}{2}\sum_k \mathfrak{I}_k \cdot \omega_k^2 + \frac{1}{2}C \cdot \beta^2$$

where (β, γ) parameters have been used.

X

Moment of inertia

Rigid body moment of inertia:

$$\mathfrak{T}_R = \iiint r^2 \cdot \rho(r) \cdot r^2 dr \sin \theta \, d\theta \, d\phi$$

$$\mathfrak{I}_{R} = \frac{2}{5} M R_{o}^{2} (1 + 0.32\beta)$$

Irrotational flow moment of inertia:

$$\mathfrak{I}_F = \frac{9}{8\pi} \ M \ R_o^2 \ \beta^2$$

Experimental 2_2^+ energy and estimate of γ -deformation parameter

rigid triaxial rotor model

$$\frac{E(2_2)}{E(2_1)} = \frac{3 + \sqrt{9 - 8 \cdot \sin^2(3\gamma)}}{3 - \sqrt{9 - 8 \cdot \sin^2(3\gamma)}} \ge 2$$

Davydov and Filippov, Nucl. Phys. 8, 237 (1958)

γ	00	50	100	12.50	150	17.50	200	22.5°	25 ⁰	27.5 ⁰	300
$E(4_1)/E(2_1)$	3.33	3.33	3.32	3.31	3.28	3.21	3.12	2.99	2.84	2.72	2.67
E(6 ₁)/E(2 ₁)	7.00	7.00	6.94	6.85	6.69	6.42	6.07	5.69	5.36	5.09	5.00
E(8 ₁)/E(2 ₁)	12.00	11.97	11.83	11.56	11.11	10.48	9.78	9.13	8.55	8.15	8.00
$E(10_1)/E(2_1)$	18.33	18.31	17.91		16.42		14.30	13.31	12.47		11.67
$E(2_2)/E(2_1)$	x	65.16	15.94	10.04	6.85	4.95	3.73	2.93	2.41	2.10	2.00
$E(4_2)/E(2_1)$	x	67.50	18.28	12.41	9.27	7.44	6.36	5.76	5.51	5.54	5.67
$E(6_2)/E(2_1)$	x	71.17	22.00	16.20	13.19	11.57	10.75	10.39	10.26	10.12	10.00

Indian Institute of Technology Ropar

 (\mathfrak{S})

Prolate - oblate shape transition

GSÍ

rigid triaxial rotor model

$$\frac{B(E2;2_2 \to 0)}{B(E2;2_1 \to 0)} = \frac{1 - \frac{3 - 2\sin^2(3\gamma)}{\sqrt{9 - 8\sin^2(3\gamma)}}}{1 + \frac{3 - 2\sin^2(3\gamma)}{\sqrt{9 - 8\sin^2(3\gamma)}}}$$

$$\frac{B(E2;2_2 \to 2_1)}{B(E2;2_1 \to 0)} = \frac{\frac{20}{7} \frac{\sin^2(3\gamma)}{9 - 8\sin^2(3\gamma)}}{1 + \frac{3 - 2\sin^2(3\gamma)}{\sqrt{9 - 8\sin^2(3\gamma)}}}$$

γ	0^{0}	50	100	15 ⁰	20^{0}	25^{0}	300
$B(E2;2_2 \rightarrow 0)/B(E2;2_1 \rightarrow 0)$	0	.0075	.0288	.0560	.0718	.0445	0
$B(E2;2_2 \rightarrow 0)/B(E2;2_1 \rightarrow 0)$	0	.0111	.0525	.1510	.3826	.9058	1.43
$B(E2;2_2 \rightarrow 2)/B(E2;2_2 \rightarrow 0)$	1.43	1.49	1.70	2.70	5.35	20.6	∞

Level scheme of ¹⁹⁶Pt

 (\mathfrak{S})

Spin dependence of the spectroscopic quadrupole moment

Transition quadrupole moment in the γ-band

$$Q_{I}(I_{2}) = \sqrt{\frac{(2I-2)\cdot(2I-1)\cdot I}{3\cdot(I+1)\cdot(I+2)\cdot(I-2)\cdot(I-3)}} \cdot \sqrt{\frac{16\pi}{5}} \cdot \langle I_{2} - 2 \| M(E2) \| I_{2} \rangle$$

B(E2)-values connecting the γ - and gs-band

Indian Institute of Technology Ropar

Hans-Jürgen Wollersheim - 2017

Interpretation of the collective properties in ¹⁹⁶Pt

14 energy levels and 22 E2 matrix elements can be described by the soft asymmetric rotor model assuming the following parameters:

$$\frac{\hbar^2}{2\Im} = 40.2 \ keV \qquad \beta = 0.135 \qquad \gamma = 32.5^{\circ} \qquad \mu = 0.35$$

$$a_0 = \beta \cdot \cos \gamma$$
$$a_2 = \frac{1}{\sqrt{2}} \beta \cdot \sin \gamma$$

P.O. Hess et al. J. Phys. G7 (1981), 737

Indian Institute of Technology Ropar

Potential energy surfaces of the W-Os-Pt-Hg chain of isotopes

Indian Institute of Technology Ropar

$$\frac{Q_s(I)}{Q_0} = \sqrt{\frac{I \cdot (2I-1)}{(I+1) \cdot (2I+1) \cdot (2I+3)}} \cdot \frac{\langle I \| M(E2) \| I \rangle}{\langle 2_1 \| M(E2) \| 0_1 \rangle}$$

C.Y. Wu, D. Cline et al.; Ann. Rev. Nucl. Part Sci 36 (1986), 683

(Č)

$$\frac{Q_s(I)}{Q_0} = \sqrt{\frac{I \cdot (2I-1)}{(I+1) \cdot (2I+1) \cdot (2I+3)}} \cdot \frac{\langle I \| M(E2) \| I \rangle}{\langle 2_1 \| M(E2) \| 0_1 \rangle}$$

R. Kulessa et al.; Phys. Lett B218 (1989), 421

$$\frac{Q_s(I)}{Q_0} = \sqrt{\frac{I \cdot (2I-1)}{(I+1) \cdot (2I+1) \cdot (2I+3)}} \cdot \frac{\langle I \| M(E2) \| I \rangle}{\langle 2_1 \| M(E2) \| 0_1 \rangle}$$

R. Kulessa et al.; Phys. Lett B218 (1989), 421

Collective properties in ^{198,200,202,204}Hg

Indian Institute of Technology Ropar

Α	$\mathbf{B}(\mathbf{E2;2}_1 \rightarrow 0_1)$
198	29 spu
200	25 spu
202	17 spu
204	12 spu

soft (µ=0.3) asymmetric rotor model:

IBM – O(6) limit:

 $\frac{B(E2;6_1 \to 4_1)}{B(E2;2_1 \to 0_1)} = \frac{5 \cdot (N-2) \cdot (N+6)}{3 \cdot N \cdot (N+4)}$ $\frac{B(E2;4_1 \to 2_1)}{B(E2;2_1 \to 0_1)} = \frac{10 \cdot (N-1) \cdot (N+5)}{7 \cdot N \cdot (N+4)}$

boson number N = 5 to 2 for *Hg-isotopes* with A=198 to 204

> C. Günther et al.; Z. Phys. A301 (1981), 119 Y.K. Agarwal et al.; Z. Phys. A320 (1985), 295

Hans-Jürgen Wollersheim - 2017

Parameter of the asymmetric rotor model

isotope	β	γ	γ	μ
^{182}W	0.274	11.40	11.20	0.17
^{184}W	0.258	13.8 ⁰	13.70	0.15
186W	0.223	15.9 ⁰	15.80	0.05
¹⁸⁶ Os	0.196	16.5 ⁰	16.1 ⁰	0.26
¹⁸⁸ Os	0.185	19.20	18.8 ⁰	0.26
¹⁹⁰ Os	0.184	22.3 ⁰	22.0^{0}	0.26
¹⁹² Os	0.168	25.2 ⁰	25.2°	0.10
¹⁹² Pt	0.146	-	32.5 ⁰	0.35
¹⁹⁴ Pt	0.134	-	32.5 ⁰	0.35
¹⁹⁶ Pt	0.135	-	32.5 ⁰	0.37
¹⁹⁸ Hg	0.106	36.3 ⁰	38.0 ⁰	0.44
²⁰⁰ Hg	0.098	39 .1 ⁰	41.0 ⁰	0.44
²⁰² Hg	0.082	33.4 ⁰	34.4 ⁰	0.35
²⁰⁴ Hg	0.068	31.5 ⁰	31.5 ⁰	0.19

$$B(E2;0_1 \to 2_1) = \frac{5}{16\pi} \cdot Q_0^2 e^2 \cdot \frac{1}{2} \cdot \left[1 + \frac{3 - 2 \cdot \sin^2(3\gamma)}{\sqrt{9 - 8 \cdot \sin^2(3\gamma)}} \right]$$

$$Q_0 = \frac{3 \cdot Z \cdot R_0^2}{\sqrt{5\pi}} \cdot \beta$$

$$\frac{E(2_2)}{E(2_1)} = \frac{3 + \sqrt{9 - 8 \cdot \sin^2(3\gamma)}}{3 - \sqrt{9 - 8 \cdot \sin^2(3\gamma)}}$$

