Photons in the universe

Indian Institute of Technology Ropar

Photons in the universe

Element production on the sun

Spectral lines of hydrogen

absorption spectrum

wave length nm

Spectral analysis

Nuclear Resonance Fluorescence (NRF) is analogous to atomic resonance fluorescence but depends upon the number of protons AND the number of neutrons in the nucleus

Photon-nuclear reactions with MeV γ-rays

Photon-nuclear reactions with MeV γ-rays

- pure electromagnetic interaction
- spin selectivity (mainly E1, M1, E2 transitions)

Low energy photon scattering at S-DALINAC

- * "white" photon spectrum
- wide energy region examined

Ì

Absorption processes

Absorption lines only a few eV wide!

Principle of measurement and self absorption

GSI

Use scatterer made of absorber material as "high-resolution detector".

First yy-coincidences in a y-beam

First yy-coincidences in a y-beam

First yy-coincidences in a y-beam

(E)

Total power received by Earth from the Sun

extreme light infrastructure, Europe

Compton scattering and inverse Compton scattering

Compton scattering:

- Elastic scattering of a high-energy γ-ray on a free electron.
- A fraction of the γ-ray energy is transferred to the electron.
- The wave length of the scattered γ -ray is increased: $\lambda' > \lambda$.

 $h\nu \ge m_e c^2$

$$\lambda' - \lambda = \frac{h}{m_e c} \cdot \left(1 - \cos\theta_{\gamma}\right)$$
$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} \cdot (1 - \cos\theta)}$$

Inverse Compton scattering:

- Scattering of low energy photons on ultra-relativistic electrons.
- Kinetic energy is transferred from the electron to the photon.
- The wave length of the scattered γ -ray is decreased: $\lambda^{\prime} < \lambda$.

$$\lambda' \approx \lambda \cdot \frac{1 - \beta \cdot \cos\theta_{\gamma}}{1 + \beta \cdot \cos\theta_L}$$

Inverse Compton scattering

- Electron is moving at relativistic velocity
- Transformation from laboratory frame to reference frame of e⁻ (rest frame):

in order to repeat the derivation for Compton scattering

$$E_{\gamma} = \gamma \cdot E_{\gamma} \left(1 - \frac{v}{c} \cos \theta_{e^{-\gamma}} \right)$$
Lorentz factor: $\gamma = (1 - \beta^2)^{-1/2} = 1 + \frac{T_e^{MeV}}{931.5 \cdot 0.00055}$
Doppler shift

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} \cdot (1 - \cos\phi)}$$

Compton scattering in rest frame

$$E_{\gamma}' = \gamma \cdot E_{\gamma}' \left(1 + \frac{v}{c} \cos \theta_{e^{-\gamma}}' \right)$$

transformation into the laboratory frame

• Limit $E_{\gamma} \ll m_e c^2$

$$E_{\gamma}' \approx \gamma^2 \cdot E_{\gamma} \left(1 - \frac{v}{c} \cos \theta_{e^{-\gamma}} \right) \left(1 + \frac{v}{c} \cos \theta_{e^{-\gamma'}} \right)$$

Laser Compton backscattering

Energy – momentum conservation yields $\sim 4\gamma^2$ Doppler upshift Thomsons scattering cross section is very small (6.10⁻²⁵ cm²) High photon and electron density are required

Gamma rays resulting after inverse Compton scattering

 $hv = 2.3 \text{ eV} \ (\equiv 515 \text{ nm})$

 $T_e^{lab} = 720 \ MeV \rightarrow \gamma_e = 1 + \frac{T_e^{lab}[MeV]}{931.5 \cdot A_e[u]} = 1410$ $E_{\gamma} = 2\gamma_e^2 \frac{1 + \cos\theta_L}{1 + (\gamma_e \theta_{\gamma})^2 + a_0^2 + \frac{4\gamma_e E_L}{m c^2}} \cdot E_L$ $\frac{4\gamma_e E_L}{mc^2}$ = recoil parameter $a_L = \frac{eE}{m\omega_L c}$ = normalized potential vector of the laser field E = laser electric field strength $E_L = \hbar \omega_L$ $\gamma_e = \frac{E_e}{mc^2} = \frac{1}{\sqrt{1-\beta^2}} = \text{Lorentz factor}$

photon scattering on relativistic electrons ($\gamma >> 1$)

maximum frequency amplification:

head-on collision ($\theta_L = 0^0$) & backscattering ($\theta_{\nu} = 0^0$)

 $E_{\gamma} \sim 4\gamma_e^2 \cdot E_L \cong 18.3 \, \text{MeV}$

A. H. Compton

Nobel Prize 1927

Scattered photons in collision

 $\rightarrow N_e = 6.25 \cdot 10^9 \qquad \rightarrow N_L = 1.3 \cdot 10^{18}$

Luminosity:
$$L = \frac{N_L \cdot N_e}{4\pi \cdot \sigma_R^2} \cdot f \simeq 2.9 \cdot 10^{32} \cdot f [cm^{-2}s^{-1}] \quad \sigma_R = 15[\mu m]$$

$$\gamma\text{-ray rate: } N_{\gamma} = L \cdot \sigma_{Thomson} \cong 2 \cdot 10^8 \cdot f \ [s^{-1}] \qquad \sigma_T = 0.67 \cdot 10^{-24} \ [cm^2]$$
(full spectrum)
repetition rate:
$$f = 3.2 \ kHz$$

Nuclear Physics

Thomson Scattering

J. J. Thomson Nobel prize 1906

Thomson scattering = elastic scattering of electromagnetic radiation by an electron at rest

- the electric and magnetic components of the incident wave act on the electron
- the electron acceleration is mainly due to the electric field
 - \rightarrow the electron will move in the direction of the oscillating electric field
 - \rightarrow the moving electron will radiate electromagnetic dipole radiation
 - → the radiation is emitted mostly in a direction perpendicular to the motion of the electron
 - \rightarrow the radiation will be polarized in a direction along the electron motion

Thomson Scattering

J. J. Thomson Nobel prize 1906

$$\frac{d\sigma_T(\theta)}{d\Omega} = \frac{1}{2}r_0^2 \cdot (1 + \cos^2\theta)$$

differential cross section

$$r_0 = \frac{e^2}{4\pi\varepsilon_0 m_e c^2} = 2.818 \cdot 10^{-15} \ [m]$$

classical electron radius

$$\sigma_T = \int \frac{d\sigma_T(\theta)}{d\Omega} d\Omega = \frac{2\pi r_0^2}{2} \int_0^{\pi} (1 + \cos^2\theta) d\theta = \frac{8\pi}{3} r_0^2 = 6.65 \cdot 10^{-29} \ [m^2] = 0.665 \ [b$$

Scattered photons in collision

$$E_{\gamma} = 2\gamma_e^2 \frac{1 + \cos\theta_L}{1 + (\gamma_e \theta_{\gamma})^2 + a_0^2 + \frac{4\gamma_e E_L}{mc^2}} \cdot E_L$$

Hans-Jürgen Wollersheim - 2018

Inverse Compton scattering of laser light

Extreme Light Infrastructure – Nuclear Physics

• Widths of particle-bound states: $\Gamma \leq 10 eV$

Breit-Wigner absorption resonance curve for isolated resonance:

$$\sigma_a(E) = \pi \bar{\lambda}^2 \frac{2J+1}{2} \frac{\Gamma_0 \Gamma}{(E-E_r)^2 + (\Gamma/2)^2} \sim \Gamma_0 / \Gamma$$

- Resonance cross section can be very large: $\sigma_0 \cong 200 [b]$ (for $\Gamma_0 = \Gamma$, 5 MeV)
- Example: 10 mg, $A \sim 200 \rightarrow N_{target} = 3 \cdot 10^{19}$, $N_{\gamma} = 100$, event rate = 0.6 [s⁻¹]

Count rate estimate

- $10^4 \gamma/(s \text{ eV})$ in 100 macro pulses
- $100 \gamma/(s eV)$ per macro pulse
- example: 10 mg, A ~ 200 target
- resonance width $\Gamma = 1 \text{ eV}$
- 2 excitations per macro pulse
- 0.6 photons per macro pulse in detector
- pp-count rate 6 Hz
- 1000 counts per 3 min

✤ narrow band width 0.5%

8 HPGe detectors 2 rings at 90⁰ and 127⁰ ε_{rel} (HPGe) = 100% solid angle ~ 1% photopeak ε_{pp} ~ 3%

narrow bandwidth allows selective excitation and detection of decay channels

Deformation and Scissors Mode

X

***** Decay to intrinsic excitations

