#### Nuclear Radii

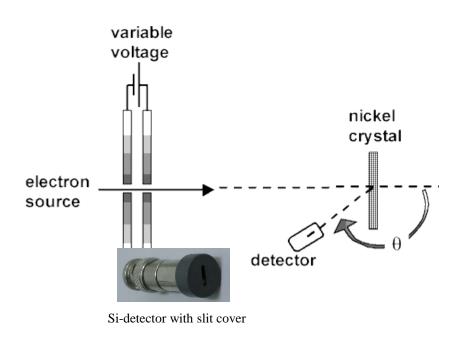
# Gross Properties of Nuclei

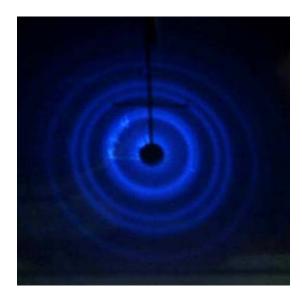




### Nuclear Radii

Clinton Davisson & Lester Germer (1925)





Scattered electrons form diffraction pattern characteristic of waves

$$\Psi \approx \cos(k \cdot x) = \cos\left(\frac{2\pi}{\lambda} \cdot x\right)$$

Wavelength found from Planck's constant and momentum:

 $\lambda = \frac{h}{m \cdot v}$ 

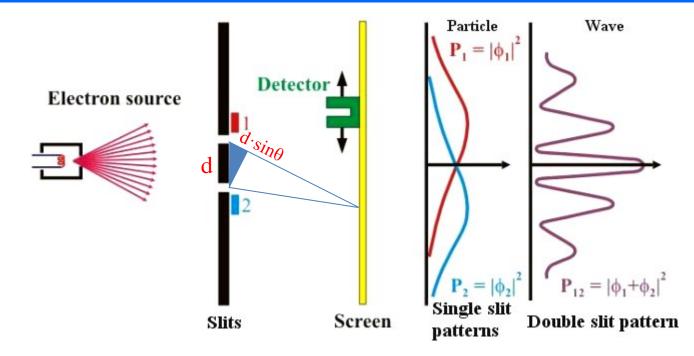
Luis de Broglie (1924): matter particles such as electrons have wave-like properties  $\lambda = \frac{h}{p} = \frac{h \cdot c}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_oc^2)}} = \frac{1239.84[MeV fm]}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}}$ Electrons at **keV** energies: "interfere" with Angstrom (~10<sup>-10</sup> m) scale atomic lattice structure

 $m_0 = 0.511 [MeV]$ 

 $\hbar = 6.58 \cdot 10^{-22} \text{ [MeV s]}$ 

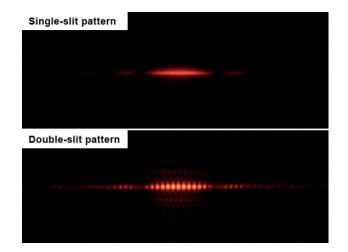
651

## Double slit electron diffraction



Interference minima when path length from holes differs by half wavelength:

$$d \cdot \sin(\theta_{min}) = \lambda/2$$



#### Electron scattering on nuclei

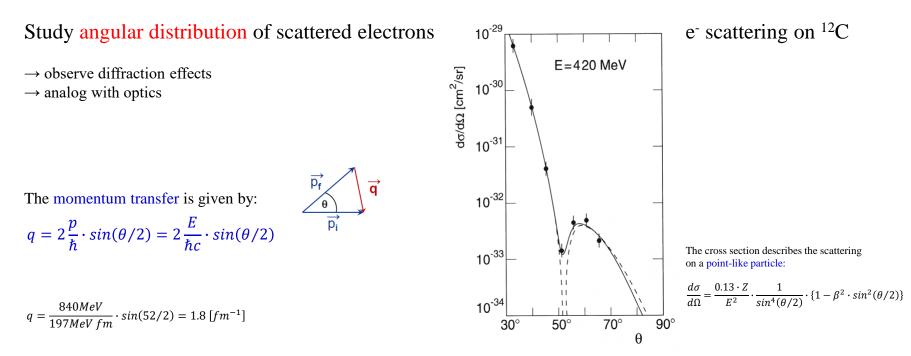
#### How do we measure nuclear radii?

Use electrons as probe  $\rightarrow$  point like particles, experience only electromagnetic interaction and not strong (nuclear) force, probe the entire nuclear volume.

#### What energy do we need?

Hint: consider required de Broglie wavelength

 $\lambda = \frac{h \cdot c}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}} = \frac{1239.84[MeV fm]}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}} \qquad \lambda = 5 \text{ [fm] for } E_{kin} \sim 250 \text{ [MeV]}$ 





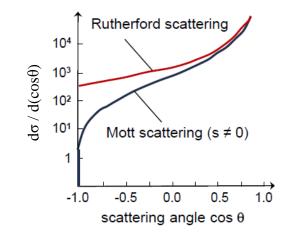
## Mott scattering

Mott scattering for relativistic projectiles with spin (no recoil effect)

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \{1 - \beta^2 \sin^2(\theta/2)\} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2\left(\frac{\theta}{2}\right)$$
$$\lim_{Rutherford} \text{for } \beta = v/c \to 1$$



Nevill F. Mott 1905-1996



Electron spin has to perform a spin-flip

 $\rightarrow$  backward scattering heavily suppressed



### Electron scattering on nuclei

Experimental cross section:

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |F(q^2)|^2$$

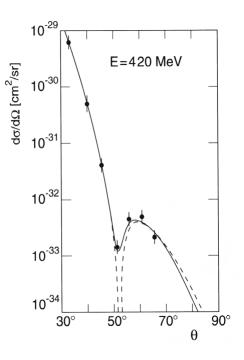
 $F(q^2)$  is the form factor, which is the Fourier transform of the charge distribution

The form factor of a homogenously charged sphere:

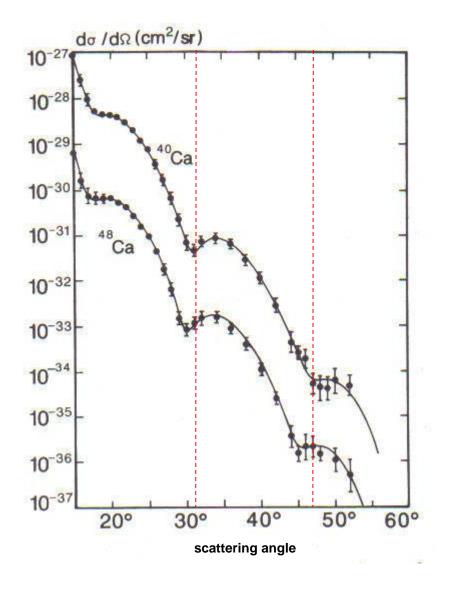
 $F(q^2) = \frac{3}{(qR)^3} \cdot \{sin(qR) - qR \cdot cos(qR)\}$ 

♦ Comparison with experimental cross section on  $^{12}C$ 

 $q \cdot R = 4.5 \longrightarrow R = 2.5 \text{ [fm] for } q = 1.8 \text{ [fm}^{-1}\text{]}$ 



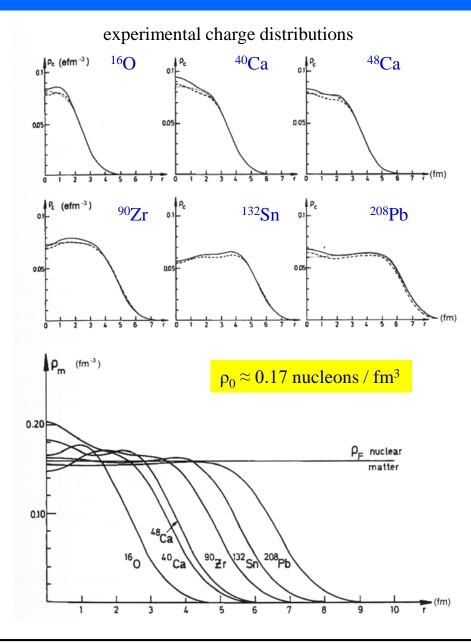


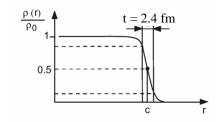


From the position of the cross section minima for  ${}^{48}$ Ca and  ${}^{40}$ Ca it is obvious that the nuclear radius **R** increases with mass number **A**.



## Charge distribution





#### Fermi distribution:

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r-c}{a}\right)}$$

with  $c\approx 1.07\!\cdot\!A^{1/3}$  fm,  $a\approx 0.54$  fm

#### Root mean square radius:

 $r_{rms} = \sqrt{\langle r^2 \rangle} = r_0 \cdot A^{1/3}$  with  $r_0 = 0.94 \ fm$ 

Equivalent radius of a sphere:

 $R^2 = 5/3 \cdot \langle r^2 \rangle \rightarrow R = 1.21 \cdot A^{1/3}$ 

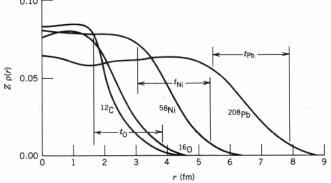


## Conclusion of nuclear radius measurements

1. The central density, is (roughly) constant, almost independent of atomic number, and has a value about 0.13 fm<sup>-3</sup>. This is very close to the density of nuclear matter in the infinite radius approximation,

 $\rho_0 = \frac{3}{4\pi r_0^3}$ 

The "skin depth", is (roughly) constant as well, almost independent of atomic number, with a value of about t=2.4 fm typically. The skin depth is usually defined as the difference in radii of the nuclear densities at 90% and 10% of maximum value.



1. Scattering measurements suggest a best fit to the radius of nuclei:

 $R_N = r_0 \cdot A^{1/3}$   $r_0 \approx 1.22 \text{ [fm]}$   $1.2 \rightarrow 1.25 \text{ is also common}$ 

4. A convenient parametric form of the nuclear density was proposed by Woods and Saxon

$$\rho_N(r) = \frac{\rho_0}{1 + exp\left(\frac{r - R_N}{a}\right)} \quad \text{with } t = a$$

4.1n3

