Limits of stability: halo nuclei

stable nuclei

p

n

n

Measurement of the total reaction cross section

- ✤ 800 MeV/u ¹¹B primary beam
- * Fragmentation
- FRagment Separator FRS

 $\sigma_I(p,t) = \pi \cdot [R_I(p) + R_I(t)]^2$

TABLE I. Interaction cross sections (σ_I) in millib
--

Beam	Ве	Target C	Al
⁶ Li	651 ± 6	688 ± 10	1010 ± 11
⁷ Li	686 ± 4	736 ± 6	1071 ± 7
⁸ Li	727 ± 6	768 ± 9	1147 ± 14
⁹ Li	739 ± 5	796 ± 6	1135 ± 7
⁷ Be	682 ± 6	738 ± 9	1050 ± 17
⁹ Be	755 ± 6	806 ± 9	1174 ± 11
¹⁰ Be	755 ± 7	813 ± 10	1153 ± 16

GSİ

Measurement of the total reaction cross section

¹¹Li is the heaviest bound Li isotope

¹⁰Li not bound $S_{2n}(^{11}Li) = 295(35) \text{ keV}$ only bound in its ground state

reason for larger radius? deformation extended wave function

 \Rightarrow measurements of magnetic moment and quadrupole moment

 $\mu (^{11}Li) = 3.667(3) \cdot \mu_N$ $\mu_{sp}(\pi p_{3/2}) = 3.79 \cdot \mu_N$

¹¹Li consists in its ground state of paired neutrons and a $p_{3/2}$ proton

b g-factor of nucleons:

 $g_{\ell} = 1; \quad g_{s} = +5.585$ proton: neutron: $g_{e} = 0; g_{s} = -3.82$

proto

proton:

$$\left< \mu_{z} \right> = \begin{cases} (j+2.293) \cdot \mu_{K} & f \ddot{u}r & j = \ell + 1/2 \\ (j-2.293) \cdot \frac{j}{j+1} \cdot \mu_{K} & f \ddot{u}r & j = \ell - 1/2 \end{cases}$$
neutron:

$$\left< \mu_{z} \right> = \begin{cases} -1.91 \cdot \mu_{K} & f \ddot{u}r & j = \ell + 1/2 \\ +1.91 \cdot \frac{j}{j+1} \cdot \mu_{K} & f \ddot{u}r & j = \ell - 1/2 \end{cases}$$

⁶Li

⁷Li 🗯

⁸Li

⁹Li 🗳

reason for larger radius? deformation extended wave function

 \Rightarrow measurements of magnetic moment and quadrupole moment

 $\mu (^{11}Li) = 3.667(3) \cdot \mu_N$ $\mu_{sp} (\pi p_{3/2}) = 3.79 \cdot \mu_N$

 $\frac{Q^{(11}Li)}{Q^{(9}Li)} = 1.09(5) \qquad Q^{(11}Li) = 0.0312(45) b$

 \rightarrow spherical and large radius not because of deformation

 $^{11}\mbox{Li}$ consists in its ground state of paired neutrons and a $p_{3/2}$ proton

3 borromean rings

Exotic nuclei with large neutron excess form nuclei with halo-structure: ¹¹Li nuclei consist of a normal ⁹Li nucleus with a halo of two neutrons. Halo nuclei form borromean states, they are interlocked in such a way that breaking any cycle allows the others to disassociate.

Single particle potential

outside of the square-well potential:

$$\left\{\frac{d^2}{dx^2} + \frac{2 \cdot m}{\hbar^2} \cdot E\right\} \phi(x) = 0 \qquad \kappa^2 = -\frac{2 \cdot m}{\hbar^2} \cdot E$$

Lösung: $\phi_a(x) = A \cdot e^{-\kappa \cdot x} + B \cdot e^{+\kappa \cdot x}$

inside of the square-well potential:

$$\left\{\frac{d^2}{dx^2} + \frac{2 \cdot m}{\hbar^2} \cdot \left(E + V_0\right)\right\} \phi(x) = 0 \qquad k^2 = \frac{2 \cdot m}{\hbar^2} \cdot \left(E + V_0\right)$$

Lösung: $\phi_i(x) = C \cdot \cos(k \cdot x) + D \cdot \sin(k \cdot x)$

continuity of the wave function: $\cot\left(k \cdot \frac{a}{2}\right) = -\frac{\kappa}{k}$

graphical solution of the eigenvalue problem

Energy eigenvalues

Orbital nł	E _{nℓ} (MeV) ³⁶ Ca R=3.96fm
1s	13.16
1р	26.90
1d	44.26
2s	52.61
1f	65.08

Schrödinger equation:

$$\begin{bmatrix} -\frac{\hbar^2}{2 \cdot \mu} \nabla^2 + V(r) \end{bmatrix} \Psi(r) = E \Psi(r)$$

$$\Psi(r) = u_{n\ell}(r) \cdot Y_{\ell m}(\vartheta, \varphi)$$

$$\frac{d^2 u}{dr^2} + \frac{2}{r} \frac{du}{dr} + \left[\frac{2 \cdot \mu}{\hbar^2} (E - V(r)) - \frac{\ell \cdot (\ell + 1)}{r^2} \right] u(r) = 0$$
with $\mu = \frac{m_{p,n} \cdot (M_A - m_{p,n})}{M_A} \cong m_{p,n} \quad \left(\approx 931.478 \frac{MeV}{c^2} \right)$

$$\begin{aligned} \boldsymbol{\ell=0} \text{ energies:} \\ \boldsymbol{\xi} \cdot \cot \boldsymbol{\xi} &= -\eta \implies \cot \left(0.2187 \cdot R \cdot \sqrt{V_0 - |E_{ns}|} \right) = -\sqrt{\frac{|E_{ns}|}{V_0 - |E_{ns}|}} \\ \boldsymbol{\ell=1} \text{ energies:} \\ \boldsymbol{k} \cdot R \cdot \cot (\boldsymbol{k} \cdot R) &= 1 + \frac{k^2}{\kappa^2} \cdot (1 + \kappa \cdot R) \\ \boldsymbol{\ell=2} \text{ energies:} \\ \frac{1}{1 - k \cdot R \cdot \cot (\boldsymbol{k} \cdot R)} &= \frac{3}{k^2 \cdot R^2} \cdot \left(1 + \frac{k^2}{\kappa^2} \right) + \frac{1}{1 + \kappa \cdot R} \end{aligned}$$

$$V_0 = \left[51 - 33.1 \cdot \frac{N - Z}{A} \right] MeV \qquad R = 1.2 \cdot A^{1/3} \ [fm]$$

Energy eigenvalues

Energy eigenvalues for $\ell=0$ in ⁴He, ¹⁶O, ⁴⁰Ca und ²⁰⁸Pb

Wave function of the deuteron

Radius of the deuteron

Indian Institute of Technology Ropar

٢

Limits of stability: halo nuclei

What can one expect at the neutron-dripline?

wave function outside of the potential

$$\Psi(r) \propto \frac{e^{-\kappa r}}{r}$$

$$\kappa^{2} = \frac{2 \cdot \mu \cdot E}{\hbar^{2}} \approx 0.05 \cdot E(MeV) \quad [fm^{-2}]$$

The smaller the binding energy, the more extended the wave function

$$\langle r^2 \rangle = \frac{1}{2 \cdot \kappa^2} \cdot (1 + \kappa \cdot R) \approx \frac{\hbar^2}{4 \cdot \mu \cdot S_n}$$

Fourier-transform:

$$|F(p)|^{2} = \hbar \cdot \kappa \cdot \frac{1}{\pi^{2} \cdot (\kappa^{2} \cdot \hbar^{2} + p^{2})^{2}}$$

Е	κ ²	κ	1/K ~ r
7 MeV	0.35 fm ⁻²	0.6 fm ⁻¹	1.7 fm
1 MeV	0.05 fm ⁻²	0.2 fm ⁻¹	4.5 fm
0.1 MeV	0.005 fm ⁻²	0.07 fm ⁻¹	14 fm

Limits of stability: halo nuclei

One can use the arguments of an extended wave function with an exponential decline:

S_{2n}=250(80) keV

$$\Psi(r) \propto \frac{e^{-\kappa r}}{r} \qquad \kappa^2 = \frac{2 \cdot \mu_{2n} \cdot S_{2n}}{\hbar^2}$$

test of the extended wave function

momentum distribution:

- wider momentum distribution for strongly bound particles
- narrow momentum distribution for weakly bound particles

 $\Delta p \cdot \Delta x \geq \hbar$ small \rightarrow large

interpretation:

One can simplify ¹¹Li by describing it as a ⁹Li core plus a di-neutron

Limits of stability - halo nuclei

radii of lighter nuclei

Prog. Part. Nucl. Phys. 59 (2007), 432

Berechnen sie den Radius der 2-Neutron Wellenfunktion für ¹¹Li

 $\sqrt{\langle r_{2n}^2 \rangle} \approx \frac{1}{\kappa}$

- \succ ¹⁰Li ist nicht gebunden
- ➢ Man kann ¹¹Li sehr vereinfacht beschreiben als ⁹Li plus einem Di-Neutron.

S_{2n}(¹¹Li) = 0.295(35) MeV

