Basic Concepts

> Particle physics studies the elementary "building blocks" of matter and interaction between them.
> Matter consists of particles and fields.
$>$ Particles interact via forces caused by fields.
$>$ Forces are being carried by special particles, called gauge bosons.

$$
\begin{array}{ll}
\text { Forces of nature: } & \\
\text { 1) gravitational } & \\
\text { 2) weak } & n \rightarrow p+e^{-}+\overline{v_{e}} \\
\text { 3) electromagnetic } & e^{+}+e^{-} \rightarrow \gamma+\gamma \\
\text { 4) strong } & \pi^{-}(d \bar{u})+p(u u d) \rightarrow K^{+}(u \bar{s})+\Sigma^{-}(d d s)
\end{array}
$$

Forces of Nature

	Acts on:	Carrier	Range	Strength	Stable systems	Induced reaction
Gravity	all particles	graviton	long $F \propto 1 / r^{2}$	$\sim 10^{-39}$	Solar system	Object falling
Weak force	fermions	bosons W and Z	$<10^{-17} m$	10^{-5}	None	β-decay
Electromagnetism	particles with electric charge	photon	long $F \propto 1 / r^{2}$	$1 / 137$	Atoms, stones	Chemical reactions
Strong force	quarks and gluons	gluon	$10^{-15} m$	1	Hadrons, nuclei	Nuclear reactions

- Two people are standing in boats. One person moves their arm and is pushed backwards; a moment later the other person grabs at an invisible object and is driven backwards. Even though you cannot see a basketball, you can assume that one person threw a basketball to the other person because you see its effect on the people.
- It turns out that all interactions which affect matter particles are due to an exchange of force carrier particles, a different type of particle altogether. These particles are like basketballs tossed between matter particles (which are like the basketball players). What we normally think of as "forces" are actually the effects of force carrier particles on matter particles.
> Electromagnetic and weak forces can be described by a single theory \Rightarrow the "Electroweak Theory" was developed in 1960s (Glashow, Weinberg, Salam).
$>$ Theory of strong interactions appeared in 1970s: "Quantum Chromodynamics" (QCD)
> The "Standard Model" (SM) combines both.

Main postulates of SM:

Abdus Salam, Steven Weinberg, Sheldon L. Glashow

1) Basic constituents of matter are quarks and leptons (spin 1/2).
2) They interact by means of gauge bosons (spin 1).
3) Quarks and leptons are subdivided into 3 generations.

The Standard Model

Fermions

Bosons

Leptons and Quarks

$$
\text { Spin }=\frac{1}{2} \quad \text { Spin }=1^{*}
$$

Baryons $(\boldsymbol{q q q}) \quad$ Spin $=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots \quad$ Spin $=0,1,2, \cdots$

Force Carrier
Particles

Meson $(q \bar{q})$

Baryons ($q q q$) and Mesons ($q \bar{q}$) are Hadrons
Baryon \# $=(q q q)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$ and $(q \bar{q})=\frac{1}{3}+\left(-\frac{1}{3}\right)=0$

Lepton	lepton \#	electron \#	muon \#
e^{-}	1	1	0
v_{e}	1	1	0
μ	1	0	1
v_{μ}	1	0	1

Lepton numbers are conserved in any reaction (for anti-leptons L = -1)

Consequence of Lepton-Number Conservation

reaction	lepton \#	electron \#	muon \#
$\nu_{e}+n \rightarrow p+e^{-}$	$1 \rightarrow 1$	$1 \rightarrow 1$	$0 \rightarrow 0$
$\overline{\nu_{e}}+n \rightarrow p+e^{-}$	$-1 \rightarrow 1$	$-1 \rightarrow 1$	$0 \rightarrow 0$
$\mu^{-} \rightarrow e^{-}+\gamma$	$1 \rightarrow 1$	$0 \rightarrow 1$	$1 \rightarrow 0$
$\overline{\nu_{\mu}}+p \rightarrow \mu^{+}+n$	$-1 \rightarrow-1$	$0 \rightarrow 0$	$-1 \rightarrow-1$
$\overline{\nu_{\mu}}+p \rightarrow e^{+}+n$	$-1 \rightarrow-1$	$0 \rightarrow-1$	$-1 \rightarrow 0$

"Strangeness" $S=-[N(s)-N(\bar{s})]$
"Charm"
"Bottomness" $\tilde{B}=-[N(b)-N(\bar{b})]$

$$
\begin{array}{ll}
B^{+}=u \bar{b}, & B^{0}=d \bar{b} \\
B^{-}=\bar{u} b, & \bar{B}^{0}=\bar{d} b
\end{array}
$$

No composite hadrons are formed that contain the top (anti) quark

* Majority of hadrons are unstable and tend to decay by the strong interaction to the state with the lowest possible mass ($\tau \sim 10^{-23} \mathrm{~s}$)
* Hadrons with the lowest possible mass for each quark number (C, S, etc.) may live much longer before decaying weakly ($\tau \sim 10^{-7}-10^{13} \mathrm{~s}$) or electromagnetically (mesons, $\tau \sim 10^{-16}-10^{-21} s$)

Some examples of baryons:

particle	mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	quark composition	charge (units of e)	S	C	B
p	0.938	uud	1	0	0	0
n	0.940	udd	0	0	0	0
Λ	1.116	uds	0	-1	0	0
Λ_{c}	2.285	udc	1	0	1	0

Some examples of mesons:

particle	mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	quark composition	charge (units of e)	S	C	B
π^{+}	0.140	$u \bar{d}$	1	0	0	0
K^{-}	0.494	$s \bar{u}$	-1	-1	0	0
D^{-}	1.869	$d \bar{c}$	-1	0	-1	0
D_{s}^{+}	1.969	$c \bar{s}$	1	1	1	0
B^{-}	5.279	$b \bar{u}$	-1	0	0	-1
Y	9.460	$b \bar{b}$	0	0	0	0

Table Bf Baryons									Mesons									
	Symbol	Makeup	Rest mass $\mathrm{MeV} / \mathrm{c}^{2}$	Spin	B	S	Lifetime (seconds>	Decay Modes	Particle	Symbol	$\begin{array}{l\|l\|} \hline \text { Anti- } \\ \text { particle } \end{array}$	Makeup	$\begin{array}{\|c\|} \hline \text { Rest mass } \\ \mathrm{MeV} / \mathrm{c}^{2} \end{array}$$\mathrm{S}$		C	B	Lifetime	Decay Modes
Particle									Particle Pion	π^{+}	particle	Makeup	$\mathrm{MeV} / \mathrm{c}^{2}$ 139.6	-	C	0	$\begin{array}{\|c\|} \hline \text { Litume } \\ \hline \hline 2.60 \\ \times 10^{-8} \\ \hline \end{array}$	\| ${ }^{\text {Decay Modes }}$
Proton	p	uud	938.3	1/2	+1	0	Stable	\ldots	Pion	π^{0}	Self	$u \bar{u}-d \bar{d}$	135.0	0	0		$\begin{array}{\|\|c} 0.83 \\ \times 10^{-16} \end{array}$	2γ
Neutron	n	ddu	939.6	1/2	+1	0	920	pe \underline{v}_{e}				$\sqrt{2}$						
	Λ^{0}	uds	1115.6	1/2	+1	-1	$\begin{gathered} 2.6 \\ \times 10^{-10} \end{gathered}$	$\mathrm{p} \pi^{-}, \mathrm{n} \pi^{0}$	Kaon	\mathbf{K}^{+}	K	uS	493.7	+1	00		$\begin{gathered} \hline \hline 1.24 \\ \times 10^{-8} \\ \hline \end{gathered}$	$\mu^{+} v_{\mu}, \pi^{+} \pi^{0}$
Lambda									Kaon	$\mathrm{K}^{0}{ }_{\text {s }}$	$\mathbf{K}_{\text {s }}{ }^{\text {a }}$	1*	497.7	+1	00		$\begin{gathered} \hline 0.89 \\ \times 10^{-10} \end{gathered}$	$\pi^{+} \pi^{-} 2 \pi^{0}$
Sigma	Σ^{+}	uus	1189.4	$1 / 2$	+1	-1	$\begin{gathered} 0.8 \\ \times 10^{-10} \end{gathered}$	$\mathrm{p} \pi^{0}, \mathrm{n} \pi^{+}$	Kaon	$\mathbf{K}_{\text {L }}^{0}$	$\mathbf{K}_{\text {L }}{ }^{\text {l }}$	1*	497.7	+1	0	0	$\begin{array}{r}5.2 \\ \times 10^{-8} \\ \hline\end{array}$	$\pi^{+} \mathrm{e}^{-} \underline{v}_{e}$
Sigma	Σ^{0}	uds	1192.5	1/2	$+1$	-1	6×10^{-20}	$\Lambda^{0} \gamma$	Eta	η^{0}	Self	2*	548.8	0	0	0	$<10^{-18}$	$2 \gamma, 3 \mu$
	Σ^{-}	dds	1197.3	1/2	+1	-1		$n \pi$	$\begin{array}{\|\|l\|} \mid \text { Eta prime } \\ \hline \hline \underline{\text { Rho }} \\ \hline \end{array}$	η^{\prime}	Self	2*	958	0	0	0	...	$\frac{\pi^{+} \pi^{\prime} \eta}{\pi^{+} \pi^{0}}$
Sigma							$\mathrm{x} 10^{-10}$			ρ^{+}	$\rho-$	ud	770	0	0	0	0.4 $\times 10^{-23}$	
Delta	Δ^{+}	uuu	1232	3/2	+1	0	$\begin{gathered} 0.6 \\ \times 10^{-23} \end{gathered}$	$\mathrm{p} \pi^{+}$	Rho	ρ^{0}	Self	uı dd	770	0	0	0	$\begin{gathered} 0.4 \\ \times 10^{-23} \\ \hline \end{gathered}$	$\pi^{+} \pi$
Delta	Δ^{+}	uud	1232	3/2	+1	0	0.6	$\mathrm{p} \pi^{0}$	Omega	ω^{0}	Self	u un, dd	782	0	0	0	$\begin{gathered} 0.8 \\ \times 10^{-22} \end{gathered}$	$\pi^{+} \pi^{0}{ }^{0}$
Dela							$\mathrm{x} 10^{-23}$		Phi	φ	Self	SS	1020	0	$0{ }^{0}$		$\begin{gathered} 20 \\ \times 10^{-23} \\ \hline \end{gathered}$	$\mathrm{K}^{+} \mathrm{K}^{*}, \mathrm{~K}^{0} \underline{K}^{0}$
Delta	Δ^{0}	udd	1232	3/2	+1	0	$\begin{array}{r} 0.6 \\ \times 10^{-23} \\ \hline \end{array}$	$n \pi^{0}$	\| $\mathrm{D}^{\text {d }}$	D^{+}	D	cd	1869.4	0	+1	0	10.6 $\times 10^{-13}$	$\mathrm{K}_{+}{ }_{-}, \mathrm{e}^{+}{ }_{-}$
Delta	\triangle^{-}	ddd	1232	3/2	+1	0	$\begin{gathered} 0.6 \\ \times 10^{-23} \end{gathered}$	$n \pi^{-}$	D	D^{0}	\underline{D}^{0}	cu	1864.6	0	+1	0	$\begin{gathered} 4.2 \\ \times 10^{-13} \\ \hline \hline \end{gathered}$	[$\mathrm{K}, \mu, \mathrm{e}]+{ }_{+}$
		uss	1315	$1 / 2$	+1	-2			D	$\mathrm{D}^{+}{ }_{\text {s }}$	$\mathrm{D}_{\text {s }}$	cs	1969	+1	+1 0	0	4.7 $\times 10^{-13}$	K+
Cascade	Ξ^{0}						$\times 10^{-10}$	$\Lambda^{0} \pi^{0}$	J/Psi	J/ ψ	Self	cc	3096.9	0	0	0	$\begin{gathered} 0.8 \\ \times 10^{-20} \end{gathered}$	$\mathrm{e}^{+} e^{*}, \mu^{+} \mu^{\prime} \ldots$
$\begin{gathered} \mathrm{Xi} \\ \text { Cascade } \\ \hline \end{gathered}$	Ξ	dss	1321	1/2	+1	-2	$\begin{gathered} 1.64 \\ \times 10^{-10} \end{gathered}$	$\Lambda^{0} \pi^{-}$	B	B	B^{+}	bu	5279	0	0	-1	$\begin{gathered} 1.5 \\ \hline \hline 10^{-12} \\ \hline \end{gathered}$	$\mathrm{D}^{0}+$
Omega	Ω^{-}	SSS	1672	3/2	+1	-3	0.82	$\Xi^{0} \pi^{-}, \Lambda^{0} \mathrm{~K}^{-}$	B	B^{0}	\underline{B}^{0}	db	5279	0	0	-1	$\begin{gathered} 1.5 \\ \times 10^{-12} \end{gathered}$	$\mathrm{D}^{0}+{ }_{-}$
							$\mathrm{x} 10^{-10}$		B_{8}	$\mathrm{B}_{8}{ }^{0}$	$\underline{B_{3}}{ }^{0}$	sb	5370	-1	0	-1	\ldots	$\mathrm{B}_{\mathrm{s}}+$
Lambda	$\Lambda^{+}{ }_{c}$	udc	2281	$1 / 2$	$+1$	0	2×10^{-13}	\ldots	Upsilon	Υ	Self	bb	9460.4	0	0	0	$\begin{array}{\|} 1.3 \\ \times 10^{-20} \\ \hline \end{array}$	$\mathrm{e}^{+} e^{-}, \mu^{+} \mu^{-}$.

Consequence of Quark-Number Conservation

reaction	Quark configuration	charge	baryon \#	strangeness \#
$\bar{p}+p \rightarrow \pi^{0}+n$	$(\bar{u} \bar{u} \bar{d})+(u u d) \rightarrow(u \bar{u}-d \bar{d})+(u d d)$	yes	no	yes
$\pi^{-}+p \rightarrow K^{0}(d \bar{s})+n$	$(\bar{u} d)+(u u d) \rightarrow(d \bar{s})+(u d d)$	yes	yes	no
$p+p \rightarrow \pi^{+}+n+n$	$(u u d)+(u u d) \rightarrow(u \bar{d})+(u d d)+(u d d)$	no	yes	yes

decay	Quark configuration	
$\Omega^{-} \rightarrow \Lambda^{0}+K^{-}$	$(s s s) \rightarrow(u d s)+(\bar{u} s)$	$s \rightarrow u+W^{-}$and $W^{-} \rightarrow \bar{u}+d$
$K^{+} \rightarrow \pi^{+}+\pi^{0}$	$(u \bar{s}) \rightarrow(u \bar{d})+(u \bar{u}-d \bar{d})$	$\bar{s} \rightarrow \bar{u}+W^{+}$and $W^{+} \rightarrow u+\bar{d}$
$\Xi^{+} \rightarrow \Lambda^{0}+\pi^{-}$	$(d s s) \rightarrow(u d s)+(\bar{u} d)$	$s \rightarrow u+W^{-}$and $W^{-} \rightarrow \bar{u}+d$

* Standard Model does not explain neither appearance of the mass nor the reason for existence of 3 generations.

Force_Particles	Quarks	Charged Leptons	Neutrinos
Strong	yes	no	no
Electromagnetic	yes	yes	no
Weak	yes	yes	yes

Quarks (hence hadrons) have all types of interactions!

History of the Universe

Units and Dimensions

> The energy is measured in electron-Volts:

$$
1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}
$$

$$
1 \mathrm{keV}=10^{3} \mathrm{eV} ; 1 \mathrm{MeV}=10^{6} \mathrm{eV} ; 1 \mathrm{GeV}=10^{9} \mathrm{eV} ; 1 \mathrm{TeV}=10^{12} \mathrm{eV}
$$

$>$ The Planck constant (reduced) is:

$$
\hbar \equiv h / 2 \pi=6.582 \cdot 10^{-22} \mathrm{MeV} \mathrm{~s}
$$

and the "conversion constant" is:

$$
\hbar c=197.327 \cdot 10^{-15} \mathrm{MeV} \mathrm{~m}
$$

$$
\begin{aligned}
\Delta E \cdot \Delta t & =\hbar=\text { energy } * \text { time } \\
\therefore \hbar c & =\text { energy } * \text { time } * \text { velocity } \\
& =\text { energy } * \text { distance }
\end{aligned}
$$

$>$ Charges measured in terms of electronic charges $e=1.6 \cdot 10^{-19} \mathrm{C}$
$>$ Cross sections measured in terms of barns. 1 barn $=10^{-28} \mathrm{~m}^{2}$

Units and Dimensions

Because $E^{2}=p^{2} c^{2}+m^{2} c^{4}$ where E is the energy, p the momentum, m the rest mass: pc and mc^{2} have dimensions of energy and it is convenient to measure momentum in units of $\mathrm{GeV} / \mathrm{c}$ and mass in units of $\mathrm{GeV} / \mathrm{c}^{2}$.

$$
\frac{[E(\mathrm{GeV})]^{2}=[p(\mathrm{GeV} / \mathrm{c})]^{2} c^{2}+\left[m\left(\mathrm{GeV} / \mathrm{c}^{2}\right)\right]^{2} c^{4}}{1 \mathrm{eV} / \mathrm{c}^{2}=1.78 \cdot 10^{-36} \mathrm{~kg}}
$$

Because c cancels out we often omit the ci.e. put $c=1$ (and $\hbar=1$), so momenta and masses are also measured in GeV .

Units and Dimensions

This implies, however, that the results of calculations must be translated back to measureable quantities in the end. Conversion factors are the following:

quantity	conversion factor	natural unit	normal unit
mass	$1 \mathrm{~kg}=5.61 \cdot 10^{26} \mathrm{GeV}$	GeV	$\mathrm{GeV} / \mathrm{c}^{2}$
length	$1 m=5.07 \cdot 10^{15} \mathrm{GeV}^{-1}$	GeV^{-1}	$\hbar c / \mathrm{GeV}$
time	$1 s=1.52 \cdot 10^{24} \mathrm{GeV}^{-1}$	GeV^{-1}	\hbar / GeV
unit charge	$e=\sqrt{4 \pi \alpha}$	1	$\sqrt{\hbar c}$

Excercise-1:

Derive the conversion factors for mass, length and time in the table above.

Co-moving coordinate systems

$$
S \rightarrow S^{\prime}:\left\{\begin{array}{l}
t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
x^{\prime}=\gamma(x-v t) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array} \quad S^{\prime} \rightarrow S:\left\{\begin{array}{l}
t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right) \\
x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y=y^{\prime} \\
z=z^{\prime}
\end{array}\right.\right.
$$

$$
\gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}} \quad \beta=\frac{v}{c}
$$

Lorentz contraction: $\quad L=L_{0} / \gamma$
Time dilatation:

$$
t=t_{0} \cdot \gamma
$$

non-relativistic
Earth-frame observer

Distance: $L_{0}=10^{4}$ meters
Time: $T=\frac{10^{4} \mathrm{~m}}{(0.98) \cdot\left(3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right)}$
$T=34 \cdot 10^{-6} s=21.8$ halflives $\quad=4.36$ halflives
Survival rate:

$$
\frac{I}{I_{0}}=2^{-21.8}=0.27 \cdot 10^{-6} \quad \frac{I}{I_{0}}=2^{-4.36}=0.049
$$

Or only about 0.3 out of a million

Or only about 49000 out of a million

The muon's clock is timedilated, or running slow by a factor $T=\gamma \cdot T_{0}$ so its measured half-life is $5 \cdot 1.56 \mu s=7.8 \mu s$.

non-relativistic

Distance: $L_{0}=10^{4}$ meters
Time: $T=\frac{10^{4} \mathrm{~m}}{(0.98) \cdot\left(3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right)}$
$T=34 \cdot 10^{-6} s=21.8$ halflives
Survival rate:

$$
\frac{I}{I_{0}}=2^{-21.8}=0.27 \cdot 10^{-6}
$$

Or only about 0.3 out of a million

Muon-frame observer

$$
\begin{aligned}
& =\frac{2000 \mathrm{~m}}{(0.98) \cdot\left(3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& =6.8 \cdot 10^{6} \mathrm{~s} \\
& =4.36 \text { halflives }
\end{aligned}
$$

$$
\frac{I}{I_{0}}=2^{-4.36}=0.049
$$

Or only about 49000 out of a million

The muon sees distance as length-contracted, so that $L=L_{0} / \gamma=0.2 \cdot L_{0}$ $=2 \mathrm{~km}$.

Relativistic Kinematics

The relativistic relationship between the total energy E, momentum p and rest mass m is

$$
\begin{aligned}
& E^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& \text { or } \\
& E^{2}=p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+{ }_{z}^{2} p c^{2}+m^{2} c^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Non relativistic }(p \ll m) \text { : } \\
& \begin{aligned}
E & =\left(p^{2} c^{2}+m^{2} c^{4}\right)^{1 / 2} \\
& =m c^{2} \cdot\left(1+p^{2} c^{2} / m^{2} c^{4}\right)^{1 / 2} \\
& =m c^{2} \cdot\left(1+p^{2} / 2 m^{2} c^{2}+\cdots\right) \\
& \cong m c^{2}+p^{2} / 2 m \quad(p=m v) \\
& \cong m c^{2}+\frac{1}{2} m v^{2}
\end{aligned}
\end{aligned}
$$

The particle velocity $v=\beta c$ or $\beta=v / c$ and the Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

So that $\gamma^{2}\left(1-\beta^{2}\right)=1$ or $\gamma^{2}=\gamma^{2} \beta^{2}+1 \quad$ - multiplied by $m^{2} c^{4}$

$$
\begin{aligned}
& \gamma^{2} m^{2} c^{4}=\gamma^{2} \beta^{2} m^{2} c^{4}+m^{2} c^{4} \\
& \text { Compare with } \\
& E^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E=\gamma m c^{2} \text { and } p=\gamma \beta m c \text { or } \gamma=E / m c^{2} \text { and } \beta=p / \gamma m c=p c / E
\end{aligned}
$$

Invariant Mass

$$
\begin{aligned}
\pi^{0} & \rightarrow \gamma \gamma \quad \text { decay: (two massless particles) } \\
M^{2} & =\left[\left(p_{1}, 0,0, p_{1}\right)+\left(p_{2}, 0, p_{2} \sin \theta, p_{2} \cos \theta\right)\right]^{2}=\left(p_{1}+p_{2}\right)^{2}-p_{2}^{2} \sin ^{2} \theta-\left(p_{1}+p_{2} \cos \theta\right)^{2} \\
& =2 p_{1} p_{2}(1-\cos \theta)
\end{aligned}
$$

$$
\pi^{0} \rightarrow \gamma \gamma
$$

Compute invariant mass $m_{\gamma \gamma}$ for all possible photon pairs

$$
m_{\gamma \gamma}=\sqrt{2 E_{\gamma 1} E_{\gamma 2}\left(1-\cos \theta_{\gamma \gamma}\right)}
$$

Both $\boldsymbol{\sigma}$ and $\boldsymbol{\Gamma}$ are related to the probability for the considered process to occur

Cross Section

Consider a beam of projectiles of intensity $\boldsymbol{\Phi}_{\mathrm{a}}$ particles/sec which hits a thin foil of target nuclei with the result that the beam is attenuated by reactions in the foil such that the transmitted intensity is $\boldsymbol{\Phi}$ particles/sec.
The fraction of the incident particles disappear from the beam, i.e. react, in passing through the foil is given by

$$
d \Phi=-\Phi \cdot n_{b} \cdot \sigma \cdot d x
$$

The number of reactions that are occurring is the difference between the initial and transmitted flux

$$
\begin{aligned}
\Phi_{\text {initial }}-\Phi_{\text {trans }} & =\Phi_{\text {initial }}\left(1-\exp \left[-n_{b} \cdot d \cdot \sigma\right]\right) \\
& \approx \Phi_{\text {initial }} \cdot N_{b} \cdot \sigma \quad \text { (for thin target) }
\end{aligned}
$$

Example:

A particle current of 1 pnA consists of $6 \cdot 10^{9}$ projectiles/s.
A ${ }^{132}$ Sn target ($1 \mathrm{mg} / \mathrm{cm}^{2}$) consists of $5 \cdot 10^{18}$ nuclei/ cm^{2}

$$
\frac{6 \cdot 10^{23} \cdot 10^{-3} \mathrm{~g} / \mathrm{cm}^{2}}{132 \mathrm{~g}}=4.5 \cdot 10^{18} \quad\left[\frac{\text { target nuclei }}{\mathrm{cm}^{2}}\right]
$$

Luminosity $=$ projectiles $\left[\mathrm{s}^{-1}\right]$ - target nuclei $\left[\mathrm{cm}^{-2}\right]$
Luminosity (projectile $\rightarrow{ }^{132} \mathrm{Sn}$) $=3 \cdot 10^{28}\left[\mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right]$

```
Reaction rate \(\left[\mathrm{s}^{-1}\right]=\) luminosity \(\cdot\) cross section \(\left[\mathrm{cm}^{2}\right]\)
    \(=\) projectiles \(\left[\mathrm{s}^{-1}\right] \cdot\) target nuclei \(\left[\mathrm{cm}^{-2}\right] \cdot\) cross section \(\left[\mathrm{cm}^{2}\right]\)
```


In laboratory frame: $\lambda_{\text {decay }}=\gamma \beta c \cdot \tau$

$$
\text { Uncertainty principle } \quad \Gamma \equiv \frac{\hbar}{\tau}
$$

If a particle has a finite lifetime τ, it decays with probability $e^{-t / \tau}$ and a decay width Γ can be defined. One can interpret $\Gamma \cdot \tau=\hbar$ as a relationship between uncertainty in energy (mass) and lifetime i.e. $\Delta E \cdot \Delta t=\hbar$.

Strongly decaying particles have very short lifetimes and hence large width. The $\rho(770)$ has $\Gamma=151 \mathrm{MeV}$ and $\tau=4.4 \cdot 10^{-24} \mathrm{~s}$.

Weakly decaying particles have longer lifetimes and hence much smaller widths. The K^{0} meson has $\Gamma=7.3 \cdot 10^{-12} \mathrm{MeV}$ and $\tau=0.9 \cdot 10^{-10} \mathrm{~s}$.

