γ-ray spectroscopy

* γ-decay is an electromagnetic process where the nucleus decreases in excitation energy, but does not change proton or neutron numbers
* This decay process only involves the emission of photons (γ-rays carry spin 1)

[^0]
THE ELECTROMAGNETIC SPECTRUM

Penetrates Earth Atmosphere?
 Wavelength (meters)

Y	N	Y	N

Buildings

Humans

Pinpoint

Protozoans

Molecules Atoms

Atomic Nuclei

γ-decay

* Gamma-ray emission is usually the dominant decay mode

Measurements of γ-rays let us deduce:
Energy, Spin (angular distr. / correl.), Parity (polarization), magnetic moment, lifetime (recoil distance, Doppler shift), ... of the involved nuclear levels.
${ }^{137}$ Cs detected in red: NaI scintillator
blue: HPGe (high purity Ge semiconductor)

$$
{ }_{Z}^{A} X_{N}^{*} \rightarrow{ }_{Z}^{A} X_{N}^{(*)}
$$

γ-decay in a Nutshell

* The photon emission of the nucleus essentially results from a re-ordering of nucleons within the shells.
This re-ordering often follows α or β decay, and moves the system into a more energetically favorable state.

Seurce: Krane, Fig. 5.11

γ-decay

Most β-decay transitions are followed by γ-decay.

Classical Electrodynamics

* The nucleus is a collection of moving charges, which can induce magnetic/electric fields
* The power radiated into a small area element is proportional to $\sin ^{2}(\theta)$
* The average power radiated for an electric dipole is:

$$
P=\frac{1}{12 \pi \epsilon_{0}} \frac{\omega^{4}}{c^{3}} d^{2}
$$

* For a magnetic dipole is

$$
P=\frac{1}{12 \pi \epsilon_{0}} \frac{\omega^{4}}{c^{5}} \mu^{2}
$$

Electric and magnetic dipole fields have opposite parity:
Magnetic dipoles have even parity and electric dipole fields have odd parity.

$$
\Rightarrow \pi(M \ell)=(-1)^{\ell+1} \text { and } \pi(E \ell)=(-1)^{\ell}
$$

Higher Order Multipoles

It is possible to describe the angular distribution of the radiation field as a function of the multipole order using Legendre polynomials.

- ℓ : The index of radiation
2^{ℓ} : The multipole order of the radiation
- $\ell=1 \rightarrow$ Dipole
$\ell=2 \rightarrow$ Quadrupole
$\ell=3 \rightarrow$ Octupole
- The associated Legendre polynomials $P_{2 \ell}(\cos (\theta))$ are:

For $\ell=1: \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right)$
For $\ell=2: \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right)$

Angular Momentum in γ-Decay

* The photon is a spin-1 boson
* Like α-decay and β-decay the emitted γ-ray can carry away units of angular momentum ℓ, which has given us different multipolarities for transitions.
* For orbital angular momentum, we can have values $\ell=0,1,2,3, \cdots$ that correspond to our multipolarity.
* Therefore, our selection rule is:

$$
\left|J_{i}-J_{f}\right| \leq \ell \leq\left|J_{i}+J_{f}\right|
$$

Characteristics of multipolarity

$$
\begin{aligned}
& E_{\gamma}=E_{i}-E_{f} \\
& \left|I_{i}-I_{f}\right| \leq \ell \leq I_{i}+I_{f} \\
& \Delta \pi(E \ell)=(-1)^{\ell} \\
& \Delta \pi(M \ell)=(-1)^{\ell+1}
\end{aligned}
$$

$|2-0| \leq \ell \leq 2+0$

Here $\Delta J=2$ and $\ell=2$
this is a stretched transition

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta J=1$ but $\ell=1,2,3,4,5$
and the transition can be a mix of 5 multipolarities

Electromagnetic transitions:

$$
\begin{aligned}
& \Delta \pi(\text { electric })=(-1)^{\ell} \\
& \Delta \pi(\text { magnetic })=(-1)^{\ell+1}
\end{aligned}
$$

$\Delta \boldsymbol{\pi}$	yes	E 1	M 2	E 3	M 4
	no	M 1	E 2	M 3	E 4

The basics of the situation

$$
|2-0| \leq \ell \leq 2+0
$$

$\ell=2$ and no change in parity

$\Delta \pi$					
	no	M1	E2	M3	E4

The basics of the situation

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta J=1$ but $\ell=1,2,3,4,5$
mixed E1,M2,E3,M4,E5

The basics of the situation

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta J=1$ but $\ell=1,2,3,4,5$

mixed M1,E2,M3,E4,M5

The basics of the situation

$$
\begin{aligned}
& 3^{+} \rightarrow 2^{-}: \text {mixed M1,E2,M3,E4,M5 } \\
& 3^{+} \rightarrow 2^{+}: \text {mixed E1,M2,E3,M4,E5 }
\end{aligned}
$$

In general only the lowest 2 multipoles compete
and (for reasons we will see later)
$\ell+1$ multipole generally only competes if it is electric:

```
3+}->\mp@subsup{2}{}{+}:\mathrm{ mixed M1/E2
3+}->\mp@subsup{2}{}{+}\mathrm{ : almost pure E1 (very little M2 admixture)
```

\mathbf{L}	multipolarity	$\boldsymbol{\pi}(\mathbf{E} \boldsymbol{\ell}) / \boldsymbol{\pi}(\mathbf{M} \boldsymbol{\ell})$	angular distribution
1	dipole	$-1 /+1$	
2	quadrupole	$+1 /-1$	
3	octupole	$-1 /+1$	
4	hexadecapole	$+1 /-1$	
\vdots			

parity: electric multipoles $\pi(\mathrm{E} \mathrm{\ell})=(-1)^{\ell}$, magnetic multipoles $\pi(\mathrm{M} \ell)=(-1)^{\ell+1}$

The power radiated is proportional to:

$$
P(\sigma \ell) \propto \frac{2(\ell+1) \cdot c}{\varepsilon_{0} \cdot \ell \cdot[(2 \ell+1)!!]^{2}}\left(\frac{\omega}{c}\right)^{2 \ell+2}|\mathcal{M}(\sigma \ell)|^{2}
$$

where σ means either E or M and $\mathcal{M}(\sigma \ell)$ is the E or M multipole moment of the appropriate kind.

Emission of electromagnetic radiation

$$
\begin{gathered}
T\left(E 1 ; I_{i} \rightarrow I_{f}\right)=1.59010^{17} E_{\gamma}^{3} B\left(E 1 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 2 ; I_{i} \rightarrow I_{f}\right)=1.22510^{13} E_{\gamma}^{5} B\left(E 2 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 3 ; I_{i} \rightarrow I_{f}\right)=5.70910^{8} E_{\gamma}^{7} B\left(E 3 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 4 ; I_{i} \rightarrow I_{f}\right)=1.69710^{4} E_{\gamma}^{9} B\left(E 4 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 1 ; I_{i} \rightarrow I_{f}\right)=1.75810^{13} E_{\gamma}^{3} B\left(M 1 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 2 ; I_{i} \rightarrow I_{f}\right)=1.35510^{7} E_{\gamma}^{5} B\left(M 2 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 3 ; I_{i} \rightarrow I_{f}\right)=6.31310^{0} E_{\gamma}^{7} B\left(M 3 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 4 ; I_{i} \rightarrow I_{f}\right)=1.87710^{-6} E_{\gamma}^{9} B\left(M 4 ; I_{i} \rightarrow I_{f}\right)
\end{gathered}
$$

where $\mathrm{E}_{\gamma}=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}$ is the energy of the emitted γ quantum in $\mathrm{MeV}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{f}}\right.$ are the nuclear level energies, respectively), and the reduced transition probabilities $\mathrm{B}(\mathrm{E} \ell)$ in units of $\mathrm{e}^{2}(\mathrm{barn})^{\ell}$ and $\mathrm{B}(\mathrm{M} \ell)$ in units of $\mu_{N}^{2}=\left(e \hbar / 2 m_{N} c\right)^{2}(f m)^{2 \ell-2}$

$$
\begin{aligned}
& B\left(E \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{(1.2)^{2 \lambda}}{4 \pi}\left(\frac{3}{\lambda+3}\right)^{2} A^{2 \lambda / 3} \quad e^{2}(f m)^{2 \lambda} \\
& B\left(M \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{10}{\pi}(1.2)^{2 \lambda-2}\left(\frac{3}{\lambda+3}\right)^{2} A^{(2 \lambda-2) / 3} \mu_{N}^{2}(f m)^{2 \lambda-2}
\end{aligned}
$$

For the first few values of λ, the Weisskopf estimates are

$$
\begin{gathered}
B\left(E 1 ; I_{i} \rightarrow I_{g s}\right)=6.44610^{-4} A^{2 / 3} \quad e^{2}(\text { barn }) \\
B\left(E 2 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-6} A^{4 / 3} e^{2}(\text { barn })^{2} \\
B\left(E 3 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-8} A^{2} e^{2}(\text { barn })^{3} \\
B\left(E 4 ; I_{i} \rightarrow I_{g s}\right)=6.28510^{-10} A^{8 / 3} e^{2}(\text { barn })^{4} \\
B\left(M 1 ; I_{i} \rightarrow I_{g s}\right)=1.790\left(\frac{e \hbar}{2 M c}\right)^{2}
\end{gathered}
$$

Conversion electrons

Energetics of CE-decay (i=K, L, M,....)

$$
\mathbf{E}_{\mathbf{i}}=\mathbf{E}_{\mathrm{f}}+\mathbf{E}_{\mathrm{ce}, \mathrm{i}}+\mathbf{E}_{\mathrm{BE}, \mathrm{i}}
$$

γ - and CE-decays are independent; transition probability ($\lambda \sim$ Intensity)

$$
\lambda_{\mathrm{T}}=\lambda_{\gamma}+\lambda_{\mathrm{CE}}=\lambda_{\gamma}+\lambda_{\mathrm{K}}+\lambda_{\mathrm{L}}+\lambda_{\mathrm{M}} \cdots \ldots .
$$

Conversion coefficient

$$
\alpha_{i}=\frac{\lambda_{C E, i}}{\lambda_{Y}}
$$

* For an electromagnetic transition internal conversion can occur instead of emission of gamma radiation. In this case the transition energy $\mathrm{Q}=\mathrm{E}_{\gamma}$ will be transferred to an electron of the atomic shell.

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{e}}=\mathrm{E}_{\gamma}-\mathrm{B}_{\mathrm{e}} & \begin{array}{l}
\mathrm{T}_{\mathrm{e}}: \text { kinetic energy of the electron } \\
\mathrm{B}
\end{array} \text { hinding energy of the electron }
\end{array}
$$

B_{e} : binding energy of the electron
internal conversion is important for:

- heavy nuclei $\sim Z^{3}$
- high multipolarities E ℓ or M
- small transition energies

$$
\alpha_{k}(E l) \propto Z^{3}\left(\frac{L}{L+1}\right)\left(\frac{2 m_{e} c^{2}}{E}\right)^{L+5 / 2}
$$

ELECTRON
TRAJECTORY

Doppler shift correction for projectile:

$$
T_{e}^{*}=\gamma \cdot T_{e} \cdot\left\{1-\beta_{1} \cdot \sqrt{1+2 m_{e} c^{2} / T_{e}} \cdot \cos \theta_{e 1}\right\}+m_{e} c^{2} \cdot(\gamma-1)
$$

$$
\cos \theta_{e 1}=\cos \vartheta_{1} \cos \vartheta_{e}+\sin \vartheta_{1} \sin \vartheta_{e} \cos \left(\varphi_{e}-\varphi_{1}\right)
$$

resolution of the spectrometer		$\left(\frac{\Delta p}{p}\right)_{e} / \%$
including Doppler correction		0.4
as calculated for a point source	(i)	0.004
scattering in the target	(ii)	0.11
beam optics	(iii)	0.09
evaporation of neutrons	(iv)	0.31
energy loss in the target	(v)	0.006
energy straggling of the projectiles		0.53
quadratic sum		
experimental resolution		

Mini Orange setup for conversion electron spectroscopy

Principle:

annular Si detector
(delayed fission)

Comparison of α-decay, β-decay and γ-decay

de Broglie wavelength: $\quad \lambda=\frac{h}{p}=\frac{h \cdot c}{\sqrt{E_{k i n} \cdot\left(E_{k i n}+2 m c^{2}\right)}}=\frac{1239.84[\mathrm{MeV} \mathrm{fm}]}{\sqrt{E_{\text {kin }} \cdot\left(E_{\text {kin }}+2 m c^{2}\right)}}$

decay	Energy [MeV]	de Broglie $\lambda[\mathrm{fm}]$
α-particle, $\mathrm{m}_{\alpha}=3727 \mathrm{MeV} / \mathrm{c}^{2}$	5	6.42
β-particle, $\mathrm{m}_{\mathrm{e}}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$	1	871.92
γ-photon	1	$\lambda=h \cdot c / E=1240 / E$

For α-particles this dimension is somewhat smaller than the nucleus and this is why a semiclassical treatment of α-decay is successful.
The typical β-particle has a large wavelength λ in comparison to the nuclear size and a quantum mechanical is dictated and wave analysis is called for.
For γ-decay the wavelength λ ranges from $12400-1240 \mathrm{fm}(0.1-1 \mathrm{MeV})$. Clearly, only a quantum mechanical approach has a chance of success.
γ-spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity and $\Delta \mathrm{E}$ are all measurable.

Transition rates between initial Ψ_{N}^{*} and final Ψ_{N}^{\prime} nuclear states, resulting from electromagnetic decay producing a photon with energy E_{γ} can be described by Fermi's Golden rule:

$$
\left.\lambda=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{N}^{\prime} \psi_{\gamma}\right| \mathcal{M}_{e m}\right| \Psi_{N}^{*}\right\rangle\left.\right|^{2} \frac{d n_{\gamma}}{d E_{\gamma}}
$$

where $\mathcal{M}_{e m}$ is the electromagnetic transition operator and $d n_{\gamma} / d E_{\gamma}$ is the density of final states. The photon wave function ψ_{γ} and $\mathcal{M}_{e m}$ are well known, therefore measurements of λ provide detailed knowledge of nuclear structure.

A γ-decay lifetime is typically 10^{-12} [s] and sometimes even as short as 10^{-19} [s]. However, this time span is an eternity in the life of an excited nucleon. It takes about $4 \cdot 10^{-22}$ [s] for a nucleon to cross the nucleus.

Interaction of gamma rays with matter

$$
I(x)=I_{0}(\lambda) \cdot e^{-\frac{\mu(\lambda, Z)}{\rho} \rho \cdot x}
$$

total absorption coefficient: $\boldsymbol{\mu} / \boldsymbol{\rho}\left[\mathrm{cm}^{2} / \mathrm{g}\right]$

$$
\frac{\mu_{\text {total }}}{\rho}=\sum_{i=1}^{3} \sigma_{i}
$$

$\mathrm{i}=1$ photoelectric effect
$\mathrm{i}=2$ Compton scattering $\mathrm{i}=3$ pair production

Mass dependence of X-ray absorption

For X-ray radiation the photoelectric effect is the most important interaction.

$$
(\mu / \rho)_{\text {Photo }} \approx \lambda^{3} \cdot Z^{5}
$$

Lead absorbs more than Beryllium!

${ }_{82} \mathrm{~Pb}$ serves as shielding for X -ray and γ-ray radiation; lead vests are used by medical staff people who are exposed to X-ray radiation. Co-sources are transported in thick lead container.

On the contrary:
${ }_{4} \mathrm{Be}$ is often used as windows in X-ray tubes to allow for almost undisturbed transmission of X-ray radiation.

X-ray image shows the effect of different absorptions

Bones absorb more radiation as tissues because of their higher ${ }_{20} \mathrm{Ca}$ content

Photoelectric

Isolated hits

Probability of
interaction depth

$$
E_{e, \text { kin }}=h \cdot v-E_{\text {Bindung }}
$$

Photo effect:

Absorption of a photon by a bound electron and conversion of the γ-energy in potential and kinetical energy of the ejected electron. (Nucleus preserves the momentum conservation.)

Compton scattering:

Elastic scattering of a γ-ray on a free electron. A fraction of the γ-ray energy is transferred to the Compton electron. The wave length of the scattered γ-ray is increased: $\lambda^{\wedge}>\lambda$.
relativistic $E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2} \quad$ photons: $m_{0}=m_{\gamma}=0$

$$
\rightarrow E_{\gamma}=p_{\gamma} c
$$

Momentum balance:

$$
\begin{aligned}
& \overrightarrow{p_{e}}=\overrightarrow{p_{\gamma}}-\overrightarrow{p_{\gamma}^{\prime}} \rightarrow\left|\overrightarrow{p_{e}} c\right|^{2}=\left|\left(\overrightarrow{p_{\gamma}}-\overrightarrow{p_{\gamma}^{\prime}}\right) c\right|^{2} \\
& p_{e}^{2} c^{2}=E_{\gamma}^{2}+E_{\gamma^{\prime}}^{2}-2 E_{\gamma} E_{\gamma^{\prime}} \cdot \cos \theta
\end{aligned}
$$

Energy balance:

$$
\begin{aligned}
& E_{\gamma}+m_{e} c^{2}=E_{\gamma^{\prime}}+\sqrt{\left(p_{e} c\right)^{2}+\left(m_{e} c^{2}\right)^{2}} \\
& E_{\gamma^{\prime}}=\frac{E_{\gamma}}{1+\left(E_{\gamma} / m_{e} c^{2}\right)(1-\cos \theta)}
\end{aligned}
$$

Maximum energy of the scattered electron:

$$
T\left(e^{-}\right)_{\max }=E_{\gamma} \cdot \frac{2 \cdot E_{\gamma}}{m_{e} c^{2}+2 \cdot E_{\gamma}}
$$

Energy of the scattered γ-photon:

$$
E_{\gamma}^{\prime}=\frac{E_{\gamma} \cdot m_{e} c^{2}}{m_{e} c^{2}+E_{\gamma} \cdot(1-\cos \theta)}
$$

$\cos \theta=1+\frac{m_{e} c^{2}}{E_{\gamma}}-\frac{m_{e} c^{2}}{E_{\gamma}{ }^{\prime}}$
Special case for $\mathrm{E} \gg \mathrm{m}_{\mathrm{e}} \mathrm{C}^{2}$:
γ-ray energy after 180° scatter is approximately

$$
E_{\gamma}^{\prime}=\frac{m_{e} c^{2}}{2}=256 \mathrm{keV}
$$

Gap between the incoming γ-ray and the maximum electron energy.

$$
E_{k i n}^{\max }=E_{\gamma}-E_{\gamma}^{\prime}=E_{\gamma} \cdot \frac{2 \cdot E_{\gamma} / m_{e} c^{2}}{1+2 \cdot E_{\gamma} / m_{e} c^{2}}
$$

Interaction of gamma rays with matter

Compton scattering:

Elastic scattering of a γ-ray on a free electron. A fraction of the γ-ray energy is transferred to the Compton electron. The wave length of the scattered γ-ray is increased: $\lambda^{\wedge}>\lambda$.

Interaction of gamma rays with matter

Compton scattering:

Elastic scattering of a γ-ray on a free electron.
The angle dependence is expressed by the

Klein-Nishina-Formula:

$$
\frac{d \sigma_{c}}{d \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{E_{\gamma^{\prime}}}{E_{\gamma}}\right)^{2} \cdot\left\{\frac{E_{\gamma}}{E_{\gamma^{\prime}}}+\frac{E_{\gamma^{\prime}}}{E_{\gamma}}-2 \sin ^{2} \theta \cdot \cos ^{2} \phi\right\}
$$

As shown in the plot forward scattering (θ small) is dominant for $\mathrm{E}_{\gamma}>100 \mathrm{keV}$.

Pair production:

If γ-ray energy is $\gg 2 \mathrm{~m}_{0} \mathrm{c}^{2}$ (electron rest mass 511 keV), a positron-electron pair can be formed in the strong Coulomb field of a nucleus. This pair carries the γ-ray energy minus $2 \mathrm{~m}_{0} \mathrm{C}^{2}$.

Pair production for $\mathrm{E}_{\gamma}>2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}=1.022 \mathrm{MeV}$

Interaction of gamma rays with matter

γ-rays interaction with matter via three main reaction mechanisms:

Photoelectric absorption
Compton scattering
Pair production

Gamma-ray interaction cross section

All three interaction (photo effect, Compton scattering and pair production) lead to an attenuation of the γ-ray or X-ray radiation when passing through matter. The particular contribution depends on the γ-ray energy:

Photo effect: $\sim Z^{4-5}, \mathrm{E}_{\gamma}^{-3.5}$
Compton: ~Z, $\mathrm{E}_{\gamma}{ }^{-1}$
Pair: $\sim Z^{2}$, increases with E_{γ}

The absorption attenuates the intensity, but the energy and the frequency of the γ-ray and X-ray radiation is preserved!

Detector types

Solid state semiconductor detectors: Ge
Electron-hole pairs are collected as charge
knock-on effect \rightarrow an avalanche arrives at the electrode
lots of electrons \rightarrow good energy resolution
cooled to liquid N_{2} temperature (77 K) to reduce noise
Advantage: good energy resolution ($\sim 0.15 \%$ FWHM at 1.3 MeV)
Disadvantage: relative low efficiency, cryogenic operation, limited size of crystal/detector

Scintillation detectors: e.g. NaI, BGO, $\mathrm{LaBr}_{3}(\mathrm{Ce})$
Recoiling electrons excite atoms, which then de-excite by emitting visible light
Light is collected in photomultiplier tubes (PMT) where it generates a pulse proportional to the light collected
Advantage: good time resolution
detector can be made relative large e.g. NaI detector 14 "Ø x 10 "
no need for cryogenics
Disadvantage: poor energy resolution ($\sim 5 \%$ FWHM at 1.3 MeV

$\mathrm{LaBr}_{3}(\mathrm{Ce})$

- $\mathrm{LaBr}_{3}(\mathrm{Ce})$ timing properties:
- ~ 25 ns decay time
- Timing Resolution FWHM of 130-150 ps with ${ }^{60} \mathrm{Co}$ for a $\varnothing 1^{\prime \prime} \times 1^{\prime \prime}$ crystal.
- High energy resolution, 3 \% FWHM at
 662 keV .
- Peak Emission wavelength in Blue/UV part of EM spectrum (380 nm), compatible with PMTs.

Gamma-ray spectrum of a radioactive decay

Spins and parities

Two distinct types of measurements:
Angular correlation : can be done with a non-aligned source but need $\gamma-\gamma$ coincidence information.

Angular distribution: need an aligned source but can be done with singles data.
...note that these cannot measure parity but you can usually infer something about the transition

Imagine the situation of an M1 decay between two states, the initial one has J^{π} value of 1^{+}and the final one a J^{π} of 0^{+}

The initial $\mathrm{J}^{\pi}=1^{+}$state has 3 degenerate magnetic substates which differ by the magnetic quantum numbers m of ± 1 and 0 .

The final $\mathrm{J}^{\pi}=0^{+}$state has a single magnetic substate with $\mathrm{m}=0$.

When the substates of $\mathrm{J}^{\pi}=1^{+}$state decay, the γ-rays emitted have different angular patterns.

For the M 1 case the angular distributions $\mathrm{W}(\theta)$ are:

$$
\begin{aligned}
& W_{M 1, \Delta m=1}(\theta)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right) \\
& W_{M 1, \Delta m=0}(\theta)=\frac{3}{8 \pi} \sin ^{2} \theta \\
& W_{M 1, \Delta m=-1}(\theta)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

So the total distribution is $W_{M 1}=\frac{1}{3} W_{M 1, \Delta m=1}+\frac{1}{3} W_{M 1, \Delta m=0}+\frac{1}{3} W_{M 1, \Delta m=-1}$

$$
=\frac{1}{8 \pi}\left(1+\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{1}{4 \pi}
$$

no angular dependence

Angular correlation - non-oriented source

Let's imagine we have two γ-rays which follow immediately after each other in the level scheme.

If we measure γ_{1} or γ_{2} in singles, then the distribution will be isotropic (same intensity at all angles) ... there is no preferred direction of emission

Now imagine that we measure γ_{1} and γ_{2} in coincidence. We say that measuring γ_{1} causes the intermediate state to be aligned. We define the zdirection as the direction of γ_{1}

The angular distribution of the emission of γ_{2} then depends on the spin/parities of the states involved and on the multipolarity of the transition.

A simple example:

Hence, for γ_{2} we only see the $m= \pm 1$ to $m=0$ part of the distribution i.e. we see that the intensity measured as a function of angle (relative to γ_{1}) follows a $1+$ $\cos ^{2} \theta$ distribution.

$\mathrm{I}_{1}\left(\ell_{1}\right)$	$\mathrm{I}_{2}\left(\ell_{2}\right)$	I_{3}	a_{2}	a_{4}
$0(1)$	$1(1)$	0	1	0
$1(1)$	$1(1)$	0	$-1 / 3$	0
$1(2)$	$1(1)$	0	$-1 / 3$	0
$2(1)$	$1(1)$	0	$1 / 13$	0
$3(2)$	$1(1)$	0	$-3 / 29$	0
$0(2)$	$2(2)$	0	-3	4
$1(1)$	$2(2)$	0	$-1 / 3$	0
$2(1)$	$2(2)$	0	$3 / 7$	0
$2(2)$	$2(2)$	0	$-15 / 13$	$16 / 13$
$3(2)$	$2(2)$	0	$-3 / 29$	0
$4(2)$	$2(2)$	0	$1 / 8$	$1 / 24$

In general, the γ-ray intensity varies as:

$$
W(\theta)=\sum_{k_{\text {even }}} A_{k}\left(\gamma_{1}\right) A_{k}\left(\gamma_{2}\right) Q_{k}\left(\gamma_{1}\right) Q_{k}\left(\gamma_{2}\right) P_{k}(\cos \theta)
$$

where
θ is the relative angle between the two γ-rays
Q_{k} accounts for the fact that we do not have point detectors
A_{k} depends on the details of the transition and the spins of the level
$P_{0}=1 \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right) \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right)$

$$
W(\theta)=1+a_{2} \cos ^{2} \theta+a_{4} \cos ^{4} \theta
$$

General formula

In general, the γ-ray intensity varies as:

$$
W(\theta)=\sum_{k_{\text {even }}} A_{k}\left(\gamma_{1}\right) A_{k}\left(\gamma_{2}\right) Q_{k}\left(\gamma_{1}\right) Q_{k}\left(\gamma_{2}\right) P_{k}(\cos \theta)
$$

where
θ is the relative angle between the two γ-rays
Q_{k} accounts for the fact that we do not have point detectors
A_{k} depends on the details of the transition and the spins of the level
$P_{0}=1 \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right) \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right)$

$$
\begin{aligned}
& A_{k}\left(\gamma_{1}\right)=\frac{F_{k}\left(J_{2} J_{1} \ell, \ell\right)-2 \cdot \delta \cdot F_{k}\left(J_{2} J_{1} \ell, \ell+1\right)+\delta^{2} \cdot F_{k}\left(J_{2} J_{1} \ell+1, \ell+1\right)}{1+\delta^{2}} \\
& A_{k}\left(\gamma_{2}\right)=\frac{F_{k}\left(J_{2} J_{3} L, L\right)-2 \cdot \delta \cdot F_{k}\left(J_{2} J_{3} L, L+1\right)+\delta^{2} \cdot F_{k}\left(J_{2} J_{3} L+1, L+1\right)}{1+\delta^{2}}
\end{aligned}
$$

Ferentz-Rosenzweig coefficients

$$
F_{k}\left(L L^{\prime} I_{1} I_{2}\right)=(-1)^{I_{1}+I_{2}+1} \sqrt{2 k+1} \sqrt{2 L+1} \sqrt{2 L^{\prime}+1} \sqrt{2 I_{2}+1}\left(\begin{array}{ccc}
L & L^{\prime} & k \\
1 & -1 & 0
\end{array}\right)\left\{\begin{array}{ccc}
L & L^{\prime} & k \\
I_{1} & I_{1} & I_{2}
\end{array}\right\}
$$

A special case:

${ }_{78}^{195} P t(n, \gamma){ }_{78}^{196} P t$

Angular correlations with arrays

Many arrays are designed symmetrically, so the range of possible angles is reduced.
Therefore one measures a Directional Correlation from Oriented Nuclei (DCO ratio)
In the simplest case, if you have an array with detectors at 35° and 90°.
Gate on 90° detector, measure coincident intensities in

- other 90° detectors
- 35^{0} detectors

Take the ratio and compare with calculations ... can usually separate quadrupoles from dipoles but cannot measure mixing ratios

Angular correlations with arrays

K.R.Pohl et al., Phys Rev C53 (1996) 2682

Angular distribution

In heavy-ion fusion-evaporation reactions, the compound nuclei have their spin aligned in a plane perpendicular to the beam axis:

$$
\vec{l}=\vec{r} \times \vec{p}
$$

Depending on the number and type of particles 'boiled off' before a γ-ray is emitted, transitions are emitted from oriented nuclei and therefore
 their intensity shows an angular dependence.

$$
W(\theta)=A_{0}\left(1+\frac{A_{2}}{A_{0}} \cdot B_{2} \cdot Q_{2} \cdot P_{2}(\cos \theta)+\frac{A_{4}}{A_{0}} \cdot B_{4} \cdot Q_{4} \cdot P_{4}(\cos \theta)\right)
$$

where A_{k}, Q_{k} and P_{k} are as before and B_{k} contains information about the alignment of the state

$$
B_{k}\left(I_{i}\right)=\sqrt{2 I_{i}+1} \sum_{m=-I}^{+I}(-1)^{I_{i}-m}\left\langle I_{i} m I_{i}-m \mid k 0\right\rangle P(m) \quad P(m)=\frac{\exp \left(-\frac{m^{2}}{2 \sigma^{2}}\right)}{\sum_{m^{\prime}=-I}^{+I} \exp \left(-\frac{m^{\prime 2}}{2 \sigma^{2}}\right)}
$$

Angular distribution

Measure: the γ-ray yield as a function of θ

Linear polarization

A segmented detector can be used to measure the linear polarization which can be used to distinguish between magnetic (M) and electric (E) character of radiation of the same multipolarity.

The Compton scattering cross section is larger in the direction perpendicular to the electrical field vector of the radiation.
Define experimental asymmetry as: $A=\frac{N_{90}-N_{0}}{N_{90}+N_{0}}$
where N_{90} and N_{0} are the intensities of scattered photons perpendicular and parallel to the reaction plane. The experimental linear polarization $\mathrm{P}=\mathrm{A} / \mathrm{Q}$ where Q is the polarization sensitivity of the detector

$$
\mathrm{Q} \sim 13 \% \text { at } 1 \mathrm{MeV}
$$

Linear polarization

Klein-Nishina formula:

$$
\frac{d \sigma_{c}}{d \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{E_{\gamma^{\prime}}}{E_{\gamma}}\right)^{2} \cdot\left\{\frac{E_{\gamma}}{E_{\gamma^{\prime}}}+\frac{E_{\gamma^{\prime}}}{E_{\gamma}}-2 \sin ^{2} \theta \cdot \cos ^{2} \varphi\right\}
$$

Maximum polarization at $\theta=90^{\circ}$

Proof of Principle

N. Pietralla, Nucl Instr Meth A483, 556 (2002)

Plot P against the angular distribution information to uniquely define the multipolarity.

Data from Eurogam

With a source at rest, the intrinsic resolution of the detector can be reached; efficiency decreases with the increasing detector-source distance.

With a moving source also the effective energy resolution depends on the detector-source distance
(Doppler effect)

Smalld Large d Large Ω
Small $\Omega$$\Leftrightarrow \begin{aligned} & \text { High } \varepsilon \\ & \text { Low } \varepsilon\end{aligned}$ $\Rightarrow \begin{aligned} & \text { Poor FWHM } \\ & \text { Good FWHM }\end{aligned}$

Energy resolution

The major factors affecting the final energy resolution (FWHM) at a particular energy are as follows:

$$
\Delta E_{\gamma}^{f i n a l}=\left(\Delta E_{\text {Int }}^{2}+\Delta \theta_{\text {det }}^{2}+\Delta \theta_{N}^{2}+\Delta v^{2}\right)^{1 / 2}
$$

$\Delta E_{\text {Int }}$ - The intrinsic resolution of the detector system. It includes contributions from the detector itself and the electronic components used to process the signal.
$\Delta \theta_{\text {det }}$ - The Doppler broadening arising from the opening angle of

$\Delta \theta_{N}$ - The Doppler broadening arising from the angular spread of the recoils in the target
Δv - The Doppler broadening arising from the velocity (energy) variation of the excited nucleus

Lorentz transformation:

\square Consider the space-time point

- in a given frame $\mathrm{S}:(t, x, y, z)$
- and in a (moving) frame $\mathrm{S}^{\prime}: \quad\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$

1) S‘ moves with a constant velocity v along z-axis

Space-time Lorentz transformation $\mathrm{S} \leftrightarrow \rightarrow \mathrm{S}^{\text {s }}$:

$$
\begin{array}{ll}
\underline{S \Rightarrow S^{\prime}} & \underline{S^{\prime} \Rightarrow S} \\
\hline x^{\prime}=x & x=x^{\prime} \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=\gamma(z-v t) & z=\gamma\left(z^{\prime}+v t\right) \\
t^{\prime}=\gamma(t-v z) & t=\gamma\left(t^{\prime}+v z\right)
\end{array}
$$

Consider the 4-momentum:

- in a given frame S: $\quad \boldsymbol{p} \equiv(\boldsymbol{E}, \boldsymbol{p})=\left(\boldsymbol{E}, \boldsymbol{p}_{x}, \boldsymbol{p}_{y}, \boldsymbol{p}_{z}\right)$
- in the (moving) frame $\mathrm{S}^{\text {s }}$:

$$
\boldsymbol{p}^{\prime} \equiv\left(\boldsymbol{E}^{\prime}, \overrightarrow{\boldsymbol{p}}^{\prime}\right)=\left(\boldsymbol{E}^{\prime}, \boldsymbol{p}_{x}^{\prime}, \boldsymbol{p}_{y}^{\prime}, \boldsymbol{p}_{z}^{\prime}\right)
$$

Note: units $\mathbf{c = 1}$

$$
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} z\right)
$$

$$
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} z\right)
$$

Lorentz transformation for 4-momentum $S \leftrightarrow S^{\text {': }}$

$$
v_{z}=|\vec{v}|=v
$$

$$
\begin{aligned}
p_{x}^{\prime} & =p_{x}, \quad p_{y}^{\prime}=p_{y} \\
p_{z}^{\prime} & =\gamma\left(p_{z}-v E\right) \\
E^{\prime} & =\gamma\left(E-v p_{z}\right)
\end{aligned}
$$

rest system

laboratory system
total energy:

$$
E^{*}=\gamma \cdot E-\gamma \cdot v \cdot P \cdot \cos \theta
$$

with

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(P c)^{2}}
$$

$\mathrm{E}^{*}, \mathrm{P}^{*}$ total energy and momentum in the rest system
E, P total energy and momentum in the laboratory system
$\mathrm{E}=\mathrm{Pc}$
$E^{*}=\gamma \cdot E-\gamma \cdot \beta \cdot E \cdot \cos \theta$

$$
E^{*}=\gamma \cdot E(1-\beta \cdot \cos \theta)
$$

Hendrik Lorentz
$\frac{E_{\gamma 0}}{E_{\gamma}}=\frac{1-\beta \cdot \cos \vartheta_{\gamma}^{\ell a b}}{\sqrt{1-\beta^{2}}}$
for $\vartheta_{p} \cong 0^{0}$
$\frac{d \Omega_{\text {rest }}}{d \Omega_{\text {lab }}}=\left(\frac{E_{\gamma}}{E_{\gamma 0}}\right)^{2}$

Doppler broadening and position resolution

$$
E_{\gamma 0}=E_{\gamma} \frac{1-\beta \cdot \cos \vartheta_{\gamma}}{\sqrt{1-\beta^{2}}} \quad\left(\beta, \vartheta_{p}=0^{0}, \vartheta_{\gamma} \text { and } E_{\gamma} \text { in lab }- \text { frame }\right)
$$

$$
\left(\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}\right)^{2}=\left(\frac{\beta \cdot \sin \vartheta_{\gamma}}{1-\beta \cdot \cos \vartheta_{\gamma}}\right)^{2}\left(\Delta \vartheta_{\gamma}\right)^{2}+\left(\frac{\beta-\cos \vartheta_{\gamma}}{\left(1-\beta^{2}\right) \cdot\left(1-\beta \cdot \cos \vartheta_{\gamma}\right)}\right)^{2}(\Delta \beta)^{2}+\left(\frac{1}{E_{\gamma}}\right)^{2}\left(\Delta E_{\gamma}\right)^{2}
$$

Angular resolution

Doppler broadening (opening angle of detector)

$\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}=\frac{\beta \cdot \sin \vartheta_{\gamma}}{1-\beta \cdot \cos \vartheta_{\gamma}} \cdot \Delta \vartheta_{\gamma}$
for $\vartheta_{p} \cong 0^{0}$
with
$\Delta \vartheta_{\gamma}=0.622 \cdot \arctan \frac{d[\mathrm{~mm}]}{R[\mathrm{~mm}]+30[\mathrm{~mm}]}$

$$
\begin{aligned}
& R=700[\mathrm{~mm}] \\
& d=59[\mathrm{~mm}]
\end{aligned}
$$

Doppler broadening (velocity variation)

$$
\begin{aligned}
& \frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}=\frac{\beta-\cos \vartheta_{\gamma}}{\left(1-\beta^{2}\right) \cdot\left(1-\beta \cdot \cos \vartheta_{\gamma}\right)} \cdot \Delta \beta \\
& \text { for } \vartheta_{p} \cong 0^{0} \\
& \text { with } \Delta \beta=6 \%
\end{aligned}
$$

Experimental arrangement

experimental problem:
Doppler broadening due to finite size of Ge -detector $\frac{\Delta E}{E} \sim 1 \% \quad$ for $\quad \Delta \vartheta_{\gamma}=20^{0} \quad \beta_{1} \cong 10 \%$

For projectile excitation:

$E^{*}=\gamma \cdot E \cdot\left(1-\beta_{1} \cdot \cos \theta_{\gamma 1}\right) \quad$ Doppler shift with
$\cos \theta_{\gamma 1}=\cos \vartheta_{1} \cos \vartheta_{\gamma}+\sin \vartheta_{1} \sin \vartheta_{\gamma} \cos \left(\varphi_{\gamma}-\varphi_{1}\right)$
$\Delta E \cong E^{*} \cdot \beta_{1} \cdot \sin \theta_{\gamma 1} \cdot \Delta \theta_{\gamma 1} \quad$ Doppler broadening

Contraction of the solid angle element in the laboratory system

$$
\frac{d \Omega}{d \Omega^{*}}=\left\{\frac{E^{*}}{E}\right\}^{2}
$$

with

$$
E^{*}=\gamma \cdot E \cdot(1-\beta \cdot \cos \theta) \quad \text { Doppler formula }
$$

Doppler broadening
$\Delta \vartheta_{\mathrm{e}}=20^{0}$
target - Mini-Orange: 19 cm
Mini-Orange - Si detector: 6 cm

For projectile excitation:

$$
T_{e}^{*}=\gamma \cdot T_{e} \cdot\left\{1-\beta_{1} \cdot \sqrt{1+2 m_{e} c^{2} / T_{e}} \cdot \cos \theta_{e 1}\right\}+m_{e} c^{2} \cdot(\gamma-1)
$$

with

$$
\cos \theta_{e 1}=\cos \vartheta_{1} \cos \vartheta_{e}+\sin \vartheta_{1} \sin \vartheta_{e} \cos \left(\varphi_{e}-\varphi_{1}\right)
$$

Recoil distance method

$$
\begin{aligned}
& I_{\text {degraded }}=I \cdot e^{-d / v \tau} \\
& I_{\text {shifted }}=\left(1-e^{-d / v \tau}\right)
\end{aligned}
$$

$$
\frac{I_{\text {degraded }}}{I_{\text {degraded }}+I_{\text {shifted }}}=e^{-d / v \tau}
$$

Doppler Shift Attenuation Method

Legendre polynomials

$$
\begin{aligned}
& P_{0}(\cos \theta)=1 \\
& P_{1}(\cos \theta)=\cos \theta \\
& P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
& P_{3}(\cos \theta)=\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
& P_{4}(\cos \theta)=\frac{1}{8}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right) \\
& P_{5}(\cos \theta)=\frac{1}{8}\left(63 \cos ^{5} \theta-70 \cos ^{3} \theta+15 \cos \theta\right) \\
& P_{6}(\cos \theta)=\frac{-0.05}{16}\left(231 \cos ^{6} \theta-315 \cos ^{4} \theta+105 \cos ^{2} \theta-5\right)
\end{aligned}
$$

[^0]: * Basic γ-ray properties, observables
 * γ-ray interactions in matter
 * Detector types
 * Measurement techniques

