Spectroscopy of open systems: proton emitters

Non-adiabatic theory:
Proton radioactivity – decay of the $I^\pi = 10^+$ isomer in ^{54}Ni

decay of the excited 10^+-state by proton emission and γ-radiation

2-proton radioactivity of 45Fe

1-proton emission:

$^{45}_{26}Fe_{19} \rightarrow ^{44}_{25}Mn_{19}$

-120 keV < S_p < 70 keV

t$_{1/2}$ > 100s

2-proton emission:

$^{45}_{26}Fe_{19} \rightarrow ^{43}_{24}Cr_{19}$

-1000 keV < S_{2p} < -1300 keV

t$_{1/2}$~10$^{-6}$s – 1s

proposed by V.I. Goldansky; Nucl.Phys. 19 (1960), 482 Nucl.Phys. 27 (1961), 648

discovered by M.Pfützner et al., EPJA 14 (2002) 279
2-proton radioactivity of 45Fe

Tunneling through a potential barrier:

\[\lambda = S \cdot \omega \cdot P \]

- S spectroscopic factor for 2-proton creation
- ω frequency, with which both protons hit the barrier
- P is the penetrability, the probability for a tunneling process

proposed by V.I. Goldansky; Nucl.Phys. 19 (1960), 482 Nucl.Phys. 27 (1961), 648
discovered by M.Pfützner et al., EPJA 14 (2002) 279
2-proton radioactivity of 45Fe

Monte Carlo simulation (200 events) of the opening angles between both protons for the 45Fe decay

Gaseous ionization detector developed to measure the angular and energy correlations between the protons emitted in 2p decay of 45Fe.
Optical time projection chamber

Gas (1 atm): 49% He + 49% Ar + 1% N₂ + 1% CH₄

Active area 150 mm
1ˢᵗ amplification area 3 mm
Transfer area 20 mm
2ⁿᵈ Amplification area 10 mm

G. Charpak et al., NIM A269 (1988), 142
Optical time projection chamber

CCD Camera
• 1000x1000 pix
• 12-bits
• image amplification (x2000)

Photomultiplier 5”

G. Charpak et al., NIM A269 (1988), 142
Principle of operational of the optical time projection chamber

WLS = wavelength shifter
2p decay of 45Fe

2p decay 0.53 ms after implantation
2p decay of 45Fe

2p decay 0.47 ms after implantation
2p decay of 45Fe

2p decay 5.3 ms after implantation
Event reconstruction

Track coordinates: \((r, \Theta, \varphi)\)

\[
L_0 = r \cos \Theta \\
L_{PM} = r \sin \Theta \\
r^2 = L_0^2 + L_{PM}^2 \\
\Theta = \arctan\left(\frac{L_0}{L_{PM}}\right)
\]
Optical time projection chamber

2-proton radioactivity of 45Fe

^{45}Fe decay scheme

$Q_{2p} = 1.15 \pm 0.09$ MeV und $T_{1/2}$ consistent with 2p-emission [sensitive between 1µs (2p-decay) and 10 ms (β-decay)]

The IAS has the isospin \(T = T_Z + 1 = (N-Z)/2 + 1 \)
The isospin of the ground state is \(T = T_Z = (N-Z)/2 \)

\[^2\text{He} \quad \text{D} \quad \text{nn} \]

\(T=1, \ S=0 \)

\(T=0, \ S=1 \)

\[{}_{12}^{22}\text{Mg}_{10} \quad {}_{11}^{22}\text{Na}_{11} \quad {}_{10}^{22}\text{Ne}_{12} \]