Outline: Accelerators and beam physics

Lecturer: Hans-Jürgen Wollersheim

e-mail: h.j.wollersheim@gsi.de

web-page: https://web-docs.gsi.de/~wolle/ and click on

- 1. what are accelerators used for?
- 2. relativity and units
- 3. how do we see an object
- 4. detectors the eye of a physicist
- 5. energy, wavelength and resolution

GSI – Helmholtzzentrum für Schwerionenforschung

Tentative outline of accelerator lecture series

❖ A History of Particle Accelerators

cathode rays are particles
Rutherford scattering
natural particle acceleration
electrostatic accelerators:
Cockroft Walton multiplier
Van de Graaff accelerator
Tandem accelerator

Cyclotron

motion in E- and B-fields cyclotron frequency and K-value sector focusing cyclotron

* Radio-frequency accelerator

Wideroe structure Alvarez structure synchrotron

❖ Accelerator facility at GSI

heavy ion source charge stripper to increase the efficiency UNILAC, SIS-18

* Radioactive Ion Beams

projectile fragmentation fragment separator at GSI target fragmentation isotope separation on line ISOLDE at CERN

Storage Rings

beam emittance stochastic cooling electron cooling laser cooling experimental storage ring at GSI

❖ Large Hadron Collider

electron vs. proton machine fixed target vs. colliding beam experiment LHC layout and experiments

Magnets

dipole, quadrupole, n-pole magnets

❖ Accelerator light source

Bremsstrahlung
Synchrotron radiation
Inverse Compton scattering

Application

Medical application
Ion implantation
Spallation target
Scanning
Transmutation
Radiocarbon dating

Wakefield Accelerator

Three orders of magnitude higher field gradient

Literature

Recommended Textbook

PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3875 EMail: techinfo@fieldp.com URL: http://www.fieldp.com

Recommended e-book

Additional material:

http://uspas.fnal.gov/materials/materials-table.shtml

What are accelerators used for?

High Energy Physics & Nuclear Physics

- Understand the fundamental building blocks of nature and the force that act upon them
- Understanding the structure and dynamics of nuclear matter
- In short search for answer of the most fundamental questions

Chemistry, Biology, Medicine, Material Sciences

- Find the structure of molecules, proteins, cells ... with ultimate goal of determining structure of a single organic molecule as complex as a protein!
- Determine structure of material and their properties (physics, chemistry, biology, medicine)
- Resolve structural changes in a natural (femto-sec and atto-sec) time scales

Civil, Industrial and Military Applications

- Medical treatment of tumors and cancers
- Production of medical isotopes
- Ion implantation to modify the surfaces of materials
- National security: cargo inspections, ...

This list will never be complete ...

Accelerator allow us to discover the entire zoo of elementary particles and their combinations (states)

What do we accelerate?

- * We can accelerate charged particles:
 - electrons (e-) and positrons (e+)
 - protons (p) and antiprotons (\bar{p})
 - ions (e.g. H^{1-} , Ne^{2+} , Au^{79+} , ...)
- * Few accelerators use positrons or antiprotons
 - which are created by smashing accelerated electrons or protons onto a target
- ❖ These particles are typically "born" at low-energy
 - e⁻: emission from thermionic gun at ~100 kV
 - p/ions: sources at ~50 kV
- ❖ A few dedicated facilities accelerate unstable ions
 - radioactive ion facilities
- ❖ Finally, there is a discussion and developments towards a more exotic collider using unstable muon beams
 - with 2 microsecond lifetime in the rest frame
- * The main characteristics of an accelerator:
 - energy and luminosity

Units of energy: Electron Volts

- An "electron-volt" is the energy gained by a particle of unit charge is accelerated over 1V potential
- It is really small
 - 1 eV = 1.6·10⁻¹⁹ (=0.00000000000000000016) Joules
 our usual unit of energy.
 - A 1 kg weight dropped 1m would have $6 \cdot 10^{18}$ eV of energy!

- On the other hand, it's a very useful unit when talking about individual particles
 - If we accelerate a proton using an electrical potential, we know exactly what the energy is.
 - It's also useful when thinking about mass/energy equivalence

$$(proton\ mass) \cdot c^2 = 938\ 000\ 000\ eV \approx 1\ billion\ eV = 1\ GeV$$
 $(electron\ mass) \cdot c^2 = 511\ 000\ eV \approx \frac{1}{2}\ MeV$

speed of light (c): 2.99792·108 m/s

Few numbers and units

Particle	Charge	Charge, C	Rest mass, kg	Rest mass, eV/c ²
Electron, e ⁻	-e	-1.6·10 ⁻¹⁹	9.11·10 ⁻³¹	$0.511 \cdot 10^6$
Positron, e ⁺	+e	+1.6·10 ⁻¹⁹	$9.11 \cdot 10^{-31}$	$0.511 \cdot 10^6$
Proton, p	+e	+1.6·10 ⁻¹⁹	1.67·10 ⁻²⁷	$938.3 \cdot 10^6$
Antiproton	-e	-1.6·10 ⁻¹⁹	$1.67 \cdot 10^{-27}$	$938.3 \cdot 10^6$
Ion, ${}_{Z}^{A}X$	Ze	+Z·1.6·10 ⁻¹⁹	~A·u	~A·u
Atomic mass unit, u			1.66·10-27	931.5·106

Understanding Energy

High Energy Physics is based on Einstein's equivalence of mass and energy

$$E = m \cdot c^2$$

➤ All reactions involve some mass changing either to or from energy

0.00000005 % of mass converted to energy

~ 0.1 % (of just Hydrogen!) converted

➤ If we could convert a kilogram of mass entirely to energy, it would supply all the electricity in the United States for almost a day.

Kinetic Energy

A body in motion will have a total energy given by

$$E = \frac{m_0 c^2}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \equiv \gamma \cdot m_0 c^2$$

The difference between this and m_0c^2 is called the *kinetic energy*

$$T_{kin} = m_0 c^2 \cdot (\gamma - 1)$$

Proton and electron velocities vs. kinetic energy

Kinetic Energy [MeV]

Relevant Formulae

The relevant formulae are calculated if A_1 , Z_1 and A_2 , Z_2 are the mass number (amu) and charge number of the projectile and target nucleus, respectively, and T_{lab} is the kinetic energy (MeV) in the laboratory system

$$E = T_{lab} + m_0 \cdot c^2$$

$$m \cdot c^2 = T_{lab} + m_0 \cdot c^2$$

$$\frac{m_0 \cdot c^2}{\sqrt{1 - \beta^2}} = T_{lab} + m_0 \cdot c^2$$

beam velocity:

$$\beta = \frac{\sqrt{T_{lab}^2 + 1863 \cdot A_1 \cdot T_{lab}}}{931.5 \cdot A_1 + T_{lab}}$$

Lorentz contraction factor:

$$\gamma = (1 - \beta^2)^{-1/2}$$

$$\gamma = \frac{931.5 \cdot A_1 + T_{lab}}{931.5 \cdot A_1}$$

$$\beta \cdot \gamma = \frac{\sqrt{T_{lab}^2 + 1863 \cdot A_1 \cdot T_{lab}}}{931.5 \cdot A_1}$$

Relativity and Units

Basic Relativity

total energy: $E = \gamma \cdot m_0 c^2$ kinetic energy: $T_{lab} = E - m_0 c^2 = m_0 c^2 \cdot (\gamma - 1)$ momentum: $p = \gamma \cdot m_0 v = \gamma \cdot \beta \cdot m_0 c = m_0 c \cdot \sqrt{\gamma^2 - 1}$ $E = \sqrt{(m_0 c^2)^2 + (pc)^2}$ $p = \sqrt{(\gamma \cdot m_0 c)^2 - m_0^2 c^2}$

Units

- For the most part, we will use SI units, except
 - Energy: eV (keV, MeV, etc.) $[1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}]$
 - Mass: eV/c^2 [proton = 1.67·10⁻²⁷ kg = 938.3 MeV/c²]
 - Momentum: eV/c [proton @ $\beta = 0.9$, $\rightarrow 1.94 \text{ GeV/c}$]

Another way to look at energy

Quantum mechanics tells us all particles have a wavelength

> So going to high energy allows us to probe smaller and smaller scales

If we put the high equivalent mass and the small scales together, we have ...

Different accelerators

GSI – Helmholtzzentrum für Schwerionenforschung

Accelerator facility

Accelerator facility

How do we see an object?

A light bulb shines on a hand and the different reflections make the fine structure visible.

With a magnifying glass or microscope more details can be seen, but there is a fundamental limit:

The wavelength of the light (1/1000 mm) determines the size of the resolvable objects.

available wavelength

 \rightarrow electromagnetic waves $E = \frac{hc}{\lambda}$

		•
LW	3000 m	
MW	300 m	
KW	30 m	
UKW	3 m	
GPS	0.3 m	
Infrared	10 ⁻⁶ m	
light	5·10 ⁻⁷ m	2 eV
UV	10 ⁻⁷ m	10 eV
X-ray	10 ⁻¹⁰ m	10 ⁴ eV
γ-ray	10 ⁻¹² m	10 ⁶ eV

light bulb → accelerator magnifying glass or microscope → detector

Detectors – the eyes of a particle physicist

- What means visibility?
- visibility = capability to create an image

- Projectiles → Target → Detector
- One needs:
 - 1. size of projectile « size of object
 - 2. target accuracy « size of object

How do we detect what's happening?

• Projectile: glow-in-the-dark basketballs

How do we detect what's happening?

• Projectile: glow-in-the-dark tennis balls

How do we detect what's happening?

• Projectile: glow-in-the-dark marbles

...let's get out of here!

Energy, wavelength and resolution

Small objects (smaller than λ) do not disturb the wave

→ small object is not visible

Large objects disturb the wave

→ large object is visible

***** all particles have wave properties:

$$\lambda = \frac{h}{p} = \frac{hc}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}}$$

de Broglie wavelength

Louis de Broglie

 $h \cdot c = 1239.84 \text{ [MeV fm]}$

Wave properties of atoms

- wavelength (i.e. velocity) has a resolution of 5%
- slits!!

Carnal&Mlynek, PRL 66,2689)1991 Graphik: Kurtsiefer&Pfau

Importance of high particle energies

For the investigation of small dimensions (10⁻¹⁵ m) high photon energies are needed:

$$E_{\gamma} = h \cdot \nu = \frac{hc}{\lambda} = 2 \cdot 10^{-10} [J]$$

In case of Bremsstrahlung, the electron energy is given by

$$E_e > E_{\gamma}$$
 with $E_e = e \cdot U$

An extremely high voltage is needed

$$U = \frac{E_e}{e} = 1.2 \cdot 10^9 \ [V]$$

Appendix: Basic concepts

- Speed of light: $c = 2.99792458 \times 10^8 \text{ [m/s]}$
- Relativistic energy: $E = mc^2 = m_0 \gamma c^2$
- Relativistic momentum: $p = mv = m_0 \gamma \beta c$

$$\beta = \frac{v}{c} \qquad \beta = \frac{\sqrt{T_{lab}^2 + 1863 \cdot A_1 \cdot T_{lab}}}{931.5 \cdot A_1 + T_{lab}} \qquad \gamma = (1 - \beta^2)^{-1/2} = \frac{931.5 \cdot A_1 + T_{lab}}{931.5 \cdot A_1}$$

- ❖ E p relationship: $\frac{E^2}{c^2} = p^2 + m_0^2 c^2$ ultra – relativistic particles β≈ 1, E≈ pc
- Kinetic energy: $T = E m_0 c^2 = m_0 c^2 (\gamma 1)$
- Equation of motion under Lorentz force $\frac{d\vec{p}}{dt} = \vec{F} \rightarrow m_0 \frac{d}{dt} (\gamma \vec{v}) = q(\vec{E} + \vec{v} \times \vec{B})$
- **\Delta** Electron charge: $e = 1.6021 \times 10^{-19} [C]$
- **\Leftharpoonup** Electron volts: $1 \text{ [eV]} = 1.6021 \times 10^{-19} \text{ [Joule]}$
- Energy in eV: E [eV] = $\frac{mc^2}{e} = \frac{m_0 \gamma c^2}{e}$
- Energy and rest mass: $1 \text{ eV/c}^2 = 1.78 \times 10^{-36} \text{ [kg]}$
- Electron $m_0 = 0.511 \text{ MeV/}c^2 = 9.109 \times 10^{-31} \text{ kg}$
- Proton $m_0 = 938.3 \text{ MeV/c}^2 = 1.673 \times 10^{-27} \text{ kg}$
- Neutron $m_0 = 939.6 \text{ MeV/c}^2 = 1.675 \times 10^{-27} \text{ kg}$

