Outline: Cyclotron

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

G S I

- 1. radio-frequency accelerator
- 2. cyclotron history
- 3. electromagnetic forces on charged particles
- 4. cyclotron frequency and K-value
- 5. cyclotron limits

Radio-frequency (RF) accelerators

- Key idea: using rapidly changing high frequency voltages instead of electrostatic voltages avoids corona formation and discharge
 - \rightarrow much higher accelerating voltages possible
- But: particles must have the correct phase relation to the accelerating voltage
- But: need high power RF sources!

Cyclotron (1930)

The first Cyclotron 1930

- 1930: Lawrence proposed the cyclotron (before he developed a workable color TV screen)
- 1931: Lawrence and Livingston built first cyclotron (80 keV)
- 1932: Lawrence and Livingston used a cyclotron for 1.25 MeV protons and mentioned longitudinal (phase) focusing

Ernest O. Lawrence (1901-1958)

M. Stanley Livingston (1905-1986)

✤ 1935: 60" cyclotron

Lorentz force equation gives the force in response to electric and magnetic fields:

$$\vec{F} = q \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right)$$

The equation of motion becomes:

$$\frac{d\vec{p}}{dt} = \frac{d}{dt}(m_o\gamma v) = q \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right)$$

 The kinetic energy of a charged particle increases by an amount equal to the work done (work-energy theorem)

$$\Delta W = \int \vec{F} \cdot d\vec{\ell} = q \int \vec{E} \cdot d\vec{\ell} + q \int (\vec{v} \times \vec{B}) \cdot d\vec{\ell}$$
$$\Delta W = q \int \vec{E} \cdot d\vec{\ell} + q \int (\vec{v} \times \vec{B}) \cdot \vec{v} \cdot dt = q \int \vec{E} \cdot d\vec{\ell}$$

Motion in E and B fields

✤ Governed by Lorentz force:

 $E^2 = \vec{p}^2 c^2 + m_0^2 c^4$

$$\frac{d\vec{p}}{dt} = q \cdot \left[\vec{E} + \vec{v} \times \vec{B}\right]$$

$$\Rightarrow E \frac{dE}{dt} = c^2 \vec{p} \cdot \frac{d\vec{p}}{dt}$$
$$\Rightarrow \frac{dE}{dt} = \frac{c^2 \vec{p}}{E} \cdot q \cdot (\vec{E} + \vec{v} \times \vec{B}) = \frac{qc^2}{E} \cdot \vec{p} \cdot \vec{E}$$

A magnetic field does not alter a particle's energy. Only an electric field can do this.

\diamond Acceleration along a uniform electric field (B = 0):

- We therefore reach the important conclusion that
 - magnetic fields cannot be used to change the kinetic energy of a particle
- ✤ We must rely on electric fields for particle acceleration
 - acceleration occurs along the direction of the electric field
 - energy gain is independent of the particle velocity
- In accelerators:
 - longitudinal electric fields (along the direction of the particle motion) are used for acceleration
 - magnetic fields are used to bend particles for guidance and focusing

- * There are many possibilities, depending on existence and time-dependence of \vec{E} and \vec{B} fields. For example, if there is no magnetic field $\vec{B} = 0$ and a time-independent electric field along the z-axis, then electrostatic accelerator. If the electric field is time-dependent, then LINAC.
- If $\vec{E} = 0$ and $B_{\theta} = B_r = 0$ and $B_z \perp \vec{v}$ then circular motion with $\omega_c = \dot{\theta} = \frac{q \cdot B_z}{m}$ $\omega_c =$ cyclotron frequency
- If ρ radius of curvature, then $p = q \cdot B_z \cdot \rho$ or $p[MeV/c] = 300[MeV/c] \cdot B_z[T] \cdot \rho[m]$

Motion in a uniform, constant magnetic field
 Constant energy with spiraling along a uniform magnetic field

The Cyclotron

This is a constant frequency orbital accelerator, but one in which the orbit radius increases. Cyclotron angular frequency given by:

 $\omega_c = q \cdot B/m$ independent of particle velocity

- ★ Acceleration occurs, provided the synchronism condition, RF frequency of the source matches the cyclotron frequency $\omega_{RF} \sim \omega_{c}$, is met.
- Continues gaining velocity until is spirals out $r = m \cdot v/e \cdot B$ Radius increment per turn decreases with increasing energy because the revolution time must stay constant.
- Correct for low energy $(\gamma \sim 1)$ independent of \vec{p} earlier ones were proton accelerators for a few MeV!
- As the mass increases $(m_0\gamma)$, orbital frequency changes and resonance condition is no longer fulfilled. To overcome this, either
 - Modulate the frequency \rightarrow '<u>synchrocyclotron'</u> or
 - Allow B_z to increase with R, to keep ω_c = constant. However, we will see this is unstable (n < 0 and axial motion is unstable). This can be restored by abandoning cylindrical symmetry of B field, i.e. magnet is now split into segments, and using the focusing of the magnet edges → 'sector focused cyclotron'.</p>

Typical parameters: B = 1.5 T, ω = 50 MHz, U = 200-500 kV, I [mA] E_{proton} = 20-30 MeV

First successful cyclotron, 4-5 inch model built by Lawrence and Livingston, 1929

Lawrence on the cover of *Time magazine*, 1937

Basics – Cyclotron frequency and K-value

Cyclotron frequency (homogenous) B-field

$$\omega_c = \frac{e \cdot B}{\gamma \cdot m_0}$$

Cyclotron K-value

▶ K is the relativistic **kinetic energy reached** for protons **from bending strength**:

$$p^{2} = m_{0}^{2}c^{2}(\gamma^{2} - 1) = m_{0} \cdot m_{0}c^{2}(\gamma - 1)(\gamma + 1) = m_{0}T_{kin}(\gamma + 1) \rightarrow T_{kin} = \frac{p^{2}}{m_{0}(\gamma + 1)}$$

$$\frac{T_{kin}}{A} = \frac{p^{2}}{(\gamma + 1)m_{u}} \cdot \frac{1}{A^{2}} = \frac{B^{2} \cdot \rho^{2} \cdot q^{2}}{(\gamma + 1)m_{u}} \cdot \frac{1}{A^{2}}$$

$$\frac{T_{kin}}{A} = \frac{(B \cdot \rho)^2 \cdot e^2}{(\gamma + 1)m_u} \left(\frac{q}{A}\right)^2 = K \cdot \left(\frac{q}{A}\right)^2$$

- \blacktriangleright K can be used to rescale the energy reach of protons to other charge-to-mass ratios (q/A)
- ➤ K in [MeV] is often used for naming cyclotrons

example: K-130 cyclotron, Jyväskylä

Orbit in uniform magnetic field

During time Δt , the *velocity vector* rotates through the exact same angle $\Delta \theta$. The velocity magnitude doesn't change. So the change in the velocity vector is $\Delta v = v \cdot \Delta \theta$.

The same statements are true about the *momentum vector*, which is parallel to the velocity vector. So the change in the momentum vector is $\Delta p = p \cdot \theta$.

Then
$$\vec{F} = \frac{d\vec{p}}{dt} \rightarrow q \cdot v \cdot B = \frac{\Delta p}{\Delta t} = \frac{p \cdot \Delta \theta}{\Delta t} = \frac{p \cdot (v \cdot \Delta t/R)}{\Delta t} \rightarrow q \cdot B = \frac{p}{R}$$

Remember!!!
 $p = 300 \frac{MeV}{c} \cdot \rho_{meters} \cdot B_{Tesla}$

So to get high momentum, one needs a strong magnet.

It's hard to get the field strength more than 1.5 T, because iron saturates. So one must increase the diameter.

With a 2 meter diameter one obtains p = 450 MeV/c. For protons, that's about half the speed of light, where relativity starts to become noticeable.

beam "rigidity" = $B \cdot \rho$

27-inch Cyclotron with Lawrence and Livingstone

184-inch Cyclotron Magnet in Berkeley

Cyclotron Limits

Ideally, the "184 inch" cyclotron with a field of 2.2 Tesla and orbital radius of 2.08 meters would get to p = 1373 MeV/c. Since $pc = \beta \gamma mc^2$ and $mc^2 = 938.6 \text{ MeV}$ for protons, $\beta \gamma = \frac{1373}{938.6} = 1.463$ and $\gamma = \sqrt{1 + (\beta \gamma)^2} = 1.772$

That means the kinetic energy would be 0.772 times mc^2 , or 724 MeV.

But, the period would be 77% longer at the maximum radius than it was at small radius. So particles would get out of phase rapidly and the acceleration stops.

Sector Focusing Cyclotron - PSI

In case
$$\gamma > 1$$
:

$$\omega_c = \frac{q \cdot B_z(r)}{m_0 \cdot \gamma}$$

K = 592 MeV I = 2 mA 1.3 MW

Beam parameter

Compare Fermilab (K = 400 MeV) to LHC (K = 7000 GeV)

Parameter	Symbol	Equation	Injection	Extraction
proton mass	m [GeV/c ²]		0.938	
kinetic energy	K [GeV]		.4	7000
total energy	E [GeV]	$K + mc^2$	1.3382	7000.938
momentum	p [GeV/c]	$\sqrt{E^2 - \left(mc^2\right)^2}$	0.95426	7000.938
rel. beta	β	(<i>pc</i>)/ <i>E</i>	0.713	0.999999991
rel. gamma	γ	$E/(mc^2)$	1.426	7461.5
beta-gamma	βγ	$(pc)/(mc^2)$	1.017	7461.5
rigidity	(Bp) [T-m]	p [GeV]/(.2997)	3.18	23353.

This would be the radius of curvature in a 1 T magnetic field *or* the field in Tesla needed to give a 1 m radius of curvature.

RIKEN – Superconducting Cyclotron (K-2600)

RIKEN – Nishina Center

Acceleration Scheme of Uranium

651

Pro and contra cyclotrons

pro: • compact and simple design

- efficient power transfer
- only few resonators and amplifiers needed
- **con:** injection/extraction critical
 - energy limited to 1GeV
 - complicated bending magnets
 - elaborate tuning required
- other: naturally CW operation

