Interaction of charged particles in matter

Bethe-Bloch formula describes the energy loss of heavy particles passing through matter

$$-\frac{dE}{dx} = \underbrace{4 \cdot \pi \cdot r_e^2 \cdot N_a \cdot m_e c^2}_{= 0.3071 \text{ MeV g}^{-1} \text{cm}^2} \cdot \rho \cdot \frac{Z}{A} \cdot \frac{z^2}{\beta^2} \cdot \left[\frac{1}{2} ln \left(\frac{2 \cdot m_e c^2 \cdot \gamma^2 \cdot \beta^2 \cdot T_{max}}{I^2} \right) - \beta^2 - \delta - 2 \cdot \frac{C}{Z} \right] \approx z^2 \cdot \frac{Z}{A} \cdot f(\beta, I)$$

 $T_{max} = 2 \cdot m_e c^2 \cdot \beta^2 \cdot \gamma^2$

Solid angle

 Ω = solid angle between source and detector (sr)

For a point source:

$$\frac{\Omega}{4\pi} = \frac{1}{2} \cdot \left(1 - \frac{d}{\sqrt{d^2 + r^2}} \right)$$

$\mathbf{d} (\mathbf{cm}) \mathbf{r} = 3\mathbf{cm}$	Ω/4π [%]	Ω/4π [%]
5	7.13	55
10	2.11	2.25
15	0.97	1

Statistical Error: Peak on top of Background

The area above the background represents the total counts between the vertical lines P minus the trapezoidal area B (red hatched). If the total counts are (P+B) and the endpoints of the horizontal line are B_1 and B_2 (width of $B_1 + B_2 =$ width of B), then the net area is given by:

$$\boldsymbol{P} = (\boldsymbol{P} + \boldsymbol{B}) - \boldsymbol{B}$$

The *standard deviation of* ΔP is given by:

$$\Delta P = \sqrt{P + 2 \cdot B}$$

Quality of Measurements: Resolution

Resolution generally defined as 1 standard deviation (1σ) for a Gaussian distribution, or the FWHM ($\Delta z = 2.355 \cdot \sigma_z$)

If the measurement is dominated by Poissonian fluctuations:

Fano factor F: fluctuations on N are reduced by correlation in the production of consecutive e-hole pairs. For Germanium detectors $F \sim 0.1$

$$\frac{\sigma_z}{\langle z \rangle} = \sqrt{\frac{F}{N}}$$

Luminosity

 $L = N_{projectiles} \cdot N_{target\,nuclei}$

accelerator current: 1 nA

What is the number of projectiles?

1 particle / s \equiv 1.6·10⁻¹⁹ C/s 6.25·10⁹ particles / s \equiv 1 nA

²⁸Si target thickness: 1 mg/cm² How many target nuclei?

28 g/cm² Silicon $\equiv 6.02 \cdot 10^{23}$ atoms/cm² 1 mg/cm² Silicon $\equiv 2.15 \cdot 10^{19}$ atoms/cm²

Luminosity = $6.25 \cdot 10^9 \cdot 2.15 \cdot 10^{19} = 1.34 \cdot 10^{29} [s^{-1} cm^{-2}]$

event rate $[s^{-1}] =$ luminosity $[s^{-1} \text{ cm}^{-2}] \cdot$ cross section $[\text{cm}^{2}]$

= $1.34 \cdot 10^{29} \text{ [s}^{-1} \text{ cm}^2 \text{]} \cdot \text{cross section } \text{[} \sim \text{mb} = 10^{-27} \text{ cm}^2 \text{]} \approx 10^2 \text{ [s}^{-1} \text{]}$

