Interaction of charged particles in matter

Bethe-Bloch formula describes the energy loss of heavy particles passing through matter

$$
\begin{aligned}
-\frac{d E}{d x}= & \underbrace{4}_{\underbrace{4} \cdot \pi \cdot r_{e}^{2} \cdot N_{a} \cdot m_{e} c^{2}} \cdot \rho \cdot \frac{Z}{A} \cdot \frac{z^{2}}{\beta^{2}} \cdot\left[\frac{1}{2} \ln \left(\frac{2 \cdot m_{e} c^{2} \cdot \gamma^{2} \cdot \beta^{2} \cdot T_{\max }}{I^{2}}\right)-\beta^{2}-\delta-2 \cdot \frac{C}{Z}\right] \quad \approx z^{2} \cdot \frac{Z}{A} \cdot f(\beta, I) \\
& =0.3071 \mathrm{MeV} \mathrm{~g}^{-1} \mathrm{~cm}^{2}
\end{aligned} T_{\max }=2 \cdot m_{e} c^{2} \cdot \beta^{2} \cdot \gamma^{2} \quad \text {. }
$$

dE/dx vs. E of protons in silicon

Solid angle

$\Omega=$ solid angle between source and detector (sr)

For a point source:

$$
\frac{\Omega}{4 \pi}=\frac{1}{2} \cdot\left(1-\frac{d}{\sqrt{d^{2}+r^{2}}}\right)
$$

$\mathbf{d}(\mathrm{cm}) \mathrm{r}=3 \mathrm{~cm}$	$\Omega / 4 \pi[\%]$	$\Omega / 4 \pi[\%]$
5	7.13	55
10	2.11	2.25
15	0.97	1

Statistical Error: Peak on top of Background

CHANNEL NUMBER

The area above the background represents the total counts between the vertical lines \boldsymbol{P} minus the trapezoidal area \boldsymbol{B} (red hatched). If the total counts are $(\boldsymbol{P}+\boldsymbol{B})$ and the endpoints of the horizontal line are \boldsymbol{B}_{1} and \boldsymbol{B}_{2} (width of $\mathrm{B}_{1}+\mathrm{B}_{2}=$ width of B), then the net area is given by:

$$
P=(P+B)-B
$$

The standard deviation of ΔP is given by:

$$
\Delta P=\sqrt{P+2 \cdot B}
$$

Quality of Measurements: Resolution

Resolution generally defined as 1 standard deviation (1σ) for a Gaussian distribution, or the FWHM $\left(\Delta z=2.355 \cdot \sigma_{z}\right)$

If the measurement is dominated by Poissonian fluctuations:

$$
\frac{\sigma_{z}}{\langle z\rangle}=\frac{\sqrt{N}}{N}=\frac{1}{\sqrt{N}}
$$

$>$ lowest limit for the resolution apart from Fano factor correction

Fano factor \boldsymbol{F} : fluctuations on N are reduced by correlation in the production of consecutive e-hole pairs. For Germanium detectors F ~ 0.1

$$
\frac{\sigma_{z}}{\langle z\rangle}=\sqrt{\frac{F}{N}}
$$

Luminosity

$$
L=N_{\text {projectiles }} \cdot N_{\text {target nuclei }}
$$

accelerator current: $1 \mathrm{nA} \quad$ What is the number of projectiles?

$$
\begin{aligned}
1 \text { particle } / \mathrm{s} & \equiv 1.6 \cdot 10^{-19} \mathrm{C} / \mathrm{s} \\
6.25 \cdot 10^{9} \text { particles } / \mathrm{s} & \equiv 1 \mathrm{nA}
\end{aligned}
$$

${ }^{28}$ Si target thickness: $1 \mathrm{mg} / \mathrm{cm}^{2}$ How many target nuclei?
$28 \mathrm{~g} / \mathrm{cm}^{2}$ Silicon $\equiv 6.02 \cdot 10^{23}$ atoms $/ \mathrm{cm}^{2}$
$1 \mathrm{mg} / \mathrm{cm}^{2}$ Silicon $\equiv 2.15 \cdot 10^{19}$ atoms $/ \mathrm{cm}^{2}$

$$
\text { Luminosity }=6.25 \cdot 10^{9} \cdot 2.15 \cdot 10^{19}=1.34 \cdot 10^{29}\left[\mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right]
$$

$$
\begin{aligned}
\text { event rate }\left[\mathrm{s}^{-1}\right] & =\text { luminosity }\left[\mathrm{s}^{-1} \mathrm{~cm}^{-2}\right] \cdot \text { cross section }\left[\mathrm{cm}^{2}\right] \\
& =1.34 \cdot 10^{29}\left[\mathrm{~s}^{-1} \mathrm{~cm}^{2}\right] \cdot \text { cross section }\left[\sim \mathrm{mb}=10^{-27} \mathrm{~cm}^{2}\right] \approx 10^{2}\left[\mathrm{~s}^{-1}\right]
\end{aligned}
$$

