Implantation detector as active stopper

Lecture: Hans-Jürgen Wollersheim

e-mail: h.j.wollersheim@gsi.de

Rare Isotope Investigation at GSI

Rakesh Kumar, P. Doornenbal, I. Kojouharov, W. Prokopowicz, H. Schaffner, H.J. Wollersheim

Active catcher for implantation-decay correlations Implantation-decay correlations with large background (half lifes similar to the implantation rate):

✓ implantation-decay time correlation: active catcher
✓ implantation-decay position correlation: granularity
✓ implantation of several ions: thickness and area
✓ energy of the implanted ion and the emitted β

3 double-sided silicon-strip detectors

- surface 5x5 cm²
- thickness 1 mm
- 2 x 16 3.125 mm strips
- manufactured by MICRON

Measurements with a double-sided Si-strip detector

GSĬ

Energy resolution with ²⁴¹Am source

Low energy peak from gap events at about ½ the full pulse height

C.Wrede et al. NIM B204 (2003), 619

MICRON	#2215-17
Voltage:	200V
241 •	E 5496 MAN
² "'AM	E_{α} =5.486 MeV
range	~28 µm

Strip multiplicity with ²⁴¹Am source

Two dimensional position spectra

²⁴¹Am source centered

²⁴¹Am source left

²⁴¹Am source centered, strip-multiplicity=1

²⁴¹Am source left, strip-multiplicity=1

MICRON #2243-5 Voltage: 40V, measurement in vacuum

Energy resolution with ²⁰⁷Bi source (in vacuum)

experimental set-up

MICRON #2512-17

Voltage: 200V

²⁰⁷Bi E=482, 976 keV range 0.94, 2.31 mm (e⁻e⁻ interaction)

RISING: Test of the active stopper with a ²⁰⁷Bi source

γ-energy [keV]	e⁻-energy	
569.6	481.7 [K]	
	553.8-556.7 [L]	
	565.8-567.2 [M]	
1063.7	975.7 [K]	
	1047.8-1050.6 [L]	
	1059.8-1061.2 [M]	

²⁰⁷Bi emits gamma rays and electrons

Energy resolution with ²⁰⁷Bi source (in vacuum)

²⁰⁷ Bi	E=482, 976 keV
range	$0.94, 2.31 \text{ mm} (e^{-e^{-1}} \text{ interaction})$

Energy resolution with ²⁰⁷Bi source (in vacuum)

Energy resolution with 207 Bi source (in vacuum and dry N₂)

conclusion: measurement in dry N₂

²⁰⁷ Bi	E=482, 976 keV
range	0.94, 2.31 mm (e ^{-e-} interaction)

Energy resolution of the DSSD

MICRON	∆E (²⁴¹ Am) vacuum	∆E(²⁰⁷ Bi) vacuum	∆E(²⁰⁷ Bi) dry nitrogen
#2243-5	N: 31.3 keV	N: 16.2 keV P: 33.3 keV	N: 16.0 keV P: 32.5 keV
#2243-4	N: 30.2 keV	<mark>N</mark> : 18.5 keV	
#2243-3	N: 34.0 keV	N: 18.2 keV	
#2243-2	N: 35.7 keV	N: 14.5 keV P: 27.0 keV	
#2512-17	N: 27.4 keV P: 29.7 keV	N: 14.8 keV P: 18.8 keV	

experimental set-up

²⁰⁷Bi $E_e=976 \text{ keV}$; ²⁴¹Am $E_{\alpha}=5.486 \text{ MeV}$

Energy threshold of the DSSD

Measurements with a double-sided Si-strip detector

Total cost 27,250.- €(discriminator not included)

GSI

Energy resolution with ²⁰⁷Bi source (Mesytec and Multichannel Systems)

experimental set-up

MICRON #2243-5 Voltage: 200V measurement in vacuum

ORTEC 572

shaping time 0.5 μs ΔE=122 keV 1.0 μs ΔE=112 keV 2.0 μs ΔE= 103 keV

Energy resolution with ²⁰⁷Bi source (Multichannel Systems)

MICRON #2243-5 Voltage: 200V measurement in vacuum Si_X8 15:39:16 2006-08-31 14:27:04 Si_X8 15:39:16 2006-08-31 14:27:04 $B_{X8} = \frac{50.3}{235}$ $B_{X8} = \frac{50.3}{23}$ $B_{X8} = \frac{50.3}{23}$ B_{X

experimental set-up

Active catcher for implantation-decay correlations

Implantation-decay correlations with large background (half lifes similar to the implantation rate):

✓ implantation-decay time correlation: active catcher
✓ implantation-decay position correlation: granularity
✓ implantation of several ions: thickness and area

 \checkmark energy of the implanted ion and the emitted β

3 double-sided silicon-strip detectors

- surface 5x5 cm²
- thickness 1 mm
- 2 x 16 3.125 mm strips
- manufactured by MICRON

Spectroscopy at stopped beams

Chamber for active stopper (dry N₂)

<u>result:</u> 6mm Pertinax ≈ 2mm Al 2mm Pertinax for active stopper chamber

Pertinax

phenolic-formaldehyd cellulose-paper PF CP 2061

Stopped RISING Array: 15*7 element CLUSTERs with DSSD

setup stopped beam

RISING setup with stopped beams

GSĬ

RISING setup with stopped beams

no. of Clusters	angle	distance to target
5	50 ⁰	210+10mm
5	90 ⁰	210+20mm
5	130 ⁰	210+10mm

photopeak efficiency: 18.2%

J. Simpson CCLRC Daresbury

RISING setup with stopped beams

Count rate limitations with active stopper

- $3 \times 16 \times 16 = 3 \times 256 = 768$ total pixels.
 - Assume upper limit for β -half-life of ~30 seconds
 - Each pixel hit every 5 half-lives (150 secs)
- Max. rate of $\sim 768/150 = 5$ per sec (= 50 per 10s spill).
- Rate increases directly with decreasing half-life
- (e.g., $T_{1/2} = 10$ seconds -> 150 per 10 s spill cycle)
- Dual gain pre-amps on DSSSD to get energies of
- implanted ion and β -particle
- All events time stamped with MHz clock.

Fragment Separator FRS

Fragment Separation (40Ar 50 MeV/u + Ta (100µm), wedge shaped AI (200µm) degrader)

GSİ

Chromatic Aberration

When different colors of light propagate at different speeds in a medium, the refractive index is wavelength dependent. This phenomenon is known as dispersion.

Longitudinal (axial) chromatic aberration:

The focal planes of the various colors do not coincide.

Transverse (lateral) chromatic aberration:

The size of the image varies from one color to the next.

Estimated implanted isotopes for a setting centered on ¹⁹²W in 1 mm thickness silicon with a monoenergetic degrader at S2

GSÍ

Future: The Advanced Implantation Detector Array - AIDA

