Neutral Particles

Neutron detectors

* Neutron detectors do **not** detect neutrons but products of neutron interaction!

Possible Existence of a Neutron

It has been shown by Bothe and others that beryllium when bombarded by a-particles of polonium emits a radiation of great penetrating power, which has an absorption coefficient in lead of about 0.3 (cm.)⁻¹. Recently Mme. Curie-Joliot and M. Joliot found, when measuring the ionisation produced by this beryllium radiation in a vessel with a thin window, that the ionisation increased when matter containing hydrogen was placed in front of the window. The

James Chadwick, Nature 132 (1932) 3252

Neutrons in Science ...

• Laboratory for fundamental physics: EDM

 $\hbar\omega_L \sim \mu \cdot B + d \cdot E$

- Ideal tool for probing matter:
 - No Coulomb force: deep penetration
 - Strong Interaction: isotope-specific detection
 - Magnetic moment: magnetic structures
 - Low energies: crystal structures

ultra cold neutron detection: ${}^{3}\text{He}(n,p){}^{3}\text{H}$

... Technology

• Neutrons can be used to produce energy

• Biggest disadvantage: the (free) neutron is unstable:

$\tau \approx 880 \ s$

- Intense neutron sources require considerable efforts
 - Reactors
 - High-power low-energy accelerators
 - Spallation sources

... and the world around

- Cosmic Neutrons:
 - Production in the atmosphere by galactic radiation
 - Production on the sun
- Neutron monitors: Diagnostic for solar processes
- Radiation protection at flight levels: $\frac{dH_n^*}{dt} \approx 1 - 4 \frac{\mu Sv}{h} at \ 12 \ km$

GSI

Classification of Neutrons

de Broglie wavelength: $\lambda = h/p$

Neutron detectors do not detect neutrons but products of neutron interaction!

Detection of a neutron is a sequential process

- 1. Interaction of the incident neutron: neutron transport
- 2. Transport of secondary particles to or within sensing elements hadron, ion, photon transport
- 3. Primary ionization by secondary particles
- 4. Conversion to optical photons, gas amplification: Transport of electrons and optical photons
- 5. Conversion to electrical signal

external converter (radiator)

converter = detector

Interaction of Neutrons

Indirect detection technique: induce neutrons to interact and produce charged particles.

- $n + {}_{3}^{6}Li \rightarrow \alpha + {}_{1}^{3}H + 4.78 MeV \implies Li(Tl) scintillator$
- $n + {}^{10}_{5}B \rightarrow \alpha + {}^{7}_{3}Li + 2.31 MeV \Rightarrow BF_3 gas counter$
- $n + p \rightarrow n + p$
- $n + nucleus \rightarrow hadron cascade \Rightarrow calorimeters$

- $n + \frac{3}{2}He \rightarrow p + \frac{3}{1}H + 0.765 MeV \Rightarrow \frac{3}{2}He filled proportional chambers$
 - \Rightarrow proportional chambers with e.g. CH_4
- $n + \frac{235}{92}U \rightarrow fission \ products \Rightarrow coated \ proportional \ counters$

Neutron detection and identification is important in the field of radiation protection because the relative biological effectiveness (quality factor) is high and depends on the neutron energy.

 $H[Sievert] = q \cdot D[Gray]$

Neutron detectors can only be detected after conversion to charged particles or photons:

Elastic scattering: Inelastic scattering: Radiative capture: Neutron emission: Fission:

^AX(n,n)^AX \rightarrow recoil nucleus ^AX^{Z+} $^{A}X(n,n'\gamma)^{A}X \rightarrow$ recoil nucleus $^{A}X^{Z_{+}}$, e⁻ $^{A}X(n,\gamma)^{A+1}Y \rightarrow e^{-}$ $^{A}X(n,2n)^{A-1}Y \rightarrow$ radioactive daughter Charged-particle emission: ${}^{A}X(n,lcp){}^{A'}Y \rightarrow (lcp = p, d, t, \alpha)$, recoil nucleus ${}^{A'}Y^{Z+}$ $n + {}^{A}X \rightarrow {}^{A1}X_1 + {}^{A2}X_2 + \nu n \rightarrow \text{fission fragments}$

BF₃ and ³He proportional counters

- Cylindrical and spherical shapes Large variety of sizes: I < 1 m and pressures: p < 1 bar (BF₃), 10 bar (³He)
- Counters must be calibrated:
 - ³He and BF_3 pressure ?
 - ¹⁰B enrichment ?
 - Electrical field ?
 - Wall effects ?

- n/γ discrimination using a pulse-height threshold
- BF₃: aging at high dose rates transport prohibited: HF formation!
- ³He: more efficiency than BF3 because of larger $\sigma \cdot p$ low Q-value makes n/ γ separation difficult

BF3 and ³He pulse-height spectra

- Wall effect: incomplete energy deposition by one ejectile: $E_1 < E_{dep} < E_1 + E_2$
- Significant dead times: $t_{dt} = 1 10 \ \mu s$
- Photon background suppressed by pulse-height threshold

Neutron Detection

$n + {}_2^3He \rightarrow ({}_2^4He)^* \rightarrow p + {}_1^3H, \ \ \mathrm{Q=}0.765 \ \mathrm{MeV}$

Moderate neutrons in spheres of different sizes and then detect the charged particles in a proportional counter in the center.

Bonner sphere

Hans-Jürgen Wollersheim - 2020

Physics of organic scintillators

Unitary scintillators:

- Benzene ring: delocalized π orbitals
- Singlett $({}^{1}X, {}^{1}X^{*}, {}^{1}X^{**})$ and triplet $({}^{3}X^{*}, {}^{3}X^{**})$ states

Principal physical processes:

- Excitation by electron impact, ion-ion recombination, ...
- Non-rad. efficient internal degradation ^{1,3}X^{**}→^{1,3}X^{*}+ phonon drain via competing channels: quenching states
- Rad. decay ${}^{1}X^{*} \rightarrow {}^{1}X$: prompt fluorescence: $\tau = 1-80$ ns, $\lambda_{fluor} > \lambda_{abs}$
- Rad. transition ${}^{3}X^{**} \rightarrow {}^{1}X^{*}$ forbidden
- Coll. deexc. ${}^{3}X^{*} + {}^{3}X^{*} \rightarrow {}^{1}X^{*} + {}^{1}X^{*} + phonon:$ delayed non-exp. fluorescence: $\tau > 300$ ns

Ionization quenching and pulse-shape discrimination

PARTICLE ENERGY (MeV)

651

Pulse shape discrimination

- Pulse shape discrimination (PSD) in organic scintillators are used in particularly liquid scintillators (NE213 / BC501A)
- PSD is due to long-lived decay of scintillator light caused by high dE/dx particle neutron scatter interaction events causing proton recoil

BEta deLayEd Neutron detector

 $n + {}^{3}_{2}He \rightarrow p + {}^{3}_{1}H + 765 \ keV$ $\sigma_{th} = 5400 \ b$

BELEN-30 (90x90x80 cm³ PE)

- 20 ³He counters (20 atm) outer ring
- 10³He counters (10 atm) inner ring
- efficiency $(1 \text{ keV} 1 \text{MeV}) \sim 40\%$

Understanding the r-process

Ingredients for a (successful) r-process nucleosynthesis:

- astrophysical site (debated, neutron star mergers / CCSN ?)
 → physical conditions (explosive scenario)
 - Neutron density (>> 10^{20} cm⁻³), exposure time τ , Y_e
 - Temperature (1-2 GK) / density vs time (trajectory)
- nuclear input (up to now theoretical calculations tuned to few experimental data available)

B-delayed neutron branching

- others: fission parameters, $t_{1/2}$ (α)...

r process "path", waiting points,
progenitors' abundances

 Modified path back to stability and additional neutron source

β-delayed neutron emission

Detecting n \rightarrow

- obtain t_{1/2} (^AZ)
- P(n) branching
- study β -strength function above S_n

 $Q_{\beta} > S_n$ (or > $S_{2n, 3n}$)

AΖ

Discovered in 1939 by Roberts et al.

^AZ+1

- t_{1/2}≈ few ms 55.65 s (⁸⁷Br)
- ⁸He- ¹⁵⁰La: ≈ 230 datasets available
- Only one for A>150 (²¹⁰Tl)

Large Area Neutron Detector

Large Area Neutron Detector (2m x 2m x 1m)

- neutron energy $T_n \le 1 \text{ GeV}$
- $\Delta T_n / T_n = 5.3\%$
- efficiency ~1
- passive Fe-converter

Reaction with Relativistic Radioactive Beams – R³B

Excitation energy E^* from kinematically complete measurement of all outgoing particles

$$E^* = \left(\sqrt{\sum_i m_i^2 + \sum_{i \neq j} m_i m_j \gamma_i \gamma_j (1 - \beta_i \beta_j \cos \vartheta_{ij})} - m_{proj} \right) c^2 + E_{\gamma,sum}$$

Dipole strength distribution of ⁶⁸Ni

O. Wieland et al.; Phys. Rev. Lett 102, 092502 (2009)

4

 $S \left[e^2 fm^2 / MeV \right]$

0

6

68

E1

D. Rossi et al.; Phys. Rev. Lett 111, 242503 (2013)

Hans-Jürgen Wollersheim - 2020

Neutrinos

- But a spectrum of electron energies was observed!
- Are the conservation laws wrong?
- Or is something else going on?
- Many were ready to give up these fundamental laws

Neutrinos

What if beta decay were a 3 body process? The new particle would have to be:

- → Neutral
- → Very light or massless
- → Rare interactions

Wolfgang Pauli

Pauli postulated the invisible neutrino! In a letter addressed: "Dear Radioactive Ladies and Gentlemen..."

Interaction of Neutrinos

- $v_e + n \rightarrow p + e^-$
- $\overline{v_e} + p \rightarrow n + e^+$ (discovery of the neutrino)
- $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$
- $\overline{\nu_{\mu}} + p \rightarrow n + \mu^+; \ \overline{\nu_{\tau}} + p \rightarrow n + \tau^+$
- Small cross section for MeV neutrinos:

$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left\{ \frac{\hbar p}{\left(m_p c\right)^2} \right\}^2 = 1.6 \cdot 10^{-44} cm^2 \quad for \ 0.5 \ MeV$$

★ Rate of solar neutrinos interacting in the Earth: $N \cdot \sigma \cdot d \cdot \rho \cdot flux = 6.022 \cdot 10^{23} \cdot 1.6 \cdot 10^{-44} cm^2 \cdot 1.2 \cdot 10^9 cm \cdot 5.5 \frac{g}{cm^3} \cdot 6.7 \cdot 10^{10} cm^{-2} s^{-1} = 4 cm^{-2} s^{-1}$

• For high energies (GeV-range): $\sigma(\nu_{\mu}N) = 0.67 \cdot 10^{-38} \cdot E_{\nu}[GeV] \ cm^2/nucleon$

Detecting the Neutrinos

Experimental needs:

- Strong neutrino source \rightarrow reactor
- Proton target \rightarrow H in water
- Positron and neutron detector
 - Liquid scintillator to detect gammas
 - CdCl₂ target to capture neutrons
 - Delayed coincidence

Discovery, Reines & Cowan 1956

- Conducted a series of experiments
- Stage 1: <u>Hanford</u> site, Washington
 - Too much background from cosmic rays
- Stage 2: Savannah River, South Carolina
 - Better shielding
 - 11 m from reactor
 - 12 m underground
- 200 liters of water with 40 kg CdCl₂
- Sandwiched between scintillator layers

Results:

- ~3 neutrino events per hour detected
- Used on-off switch on reactor
- Neutrinos disappeared when reactor was off

<u>Cowan</u> died in 1974, but <u>Reines</u> awarded Nobel Prize in 1995

Solar Neutrinos

Electron neutrinos produced in fusion chain 99% of solar neutrinos from pp fusion First observed in 2014 by <u>Borexino</u> Small fraction from 7Be and 8B Extend to high E Easier to detect

Bachall predicted the solar neutrino flux in 1964 He would refine this with an incredibly precise solar model over the next 50 years

First measurement of the solar neutrinos

Inverse beta-decay ("neutrino-capture")

Homestake Sun neutrino-Observatory (1967–2002)

Super Kamiokande – Detection Concept

- Muon neutrinos interact with nucleons via charged current to produce ultra relativistic muons
- The muons travel faster than the speed of light in the detector (still slower than c)
- This produces a cone of <u>Cherenkov</u> light
 - Same principle as a sonic boom
- Light is detected by photo sensors

The generated charged particle emits the Cherenkov light.

Super Kamiokande - the Detector

- 40 m water tank
- Filled with 50 ktons pure water
- Largest water <u>Cherenkov</u> detector in the world!
- >11,000 photomultipliers (PMTs) to detect light
- <u>PMTs</u> + electrical connections waterproof

Super Kamiokande - the Detector

