Outline: Nuclear rotation of odd-even nuclei

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. particle-rotor model
- 2. Euler angles
- 3. Example: ¹⁸¹Ta
- 4. reduced transition probabilities

Broad perspective on structural evolution:

 $E(4_1^+)$ $R_{4/2} = 1$ $E(2_{1}^{+})$

GSĬ

The Euler angles

- It is important to recognize that for nuclei the intrinsic reference frame can have any orientation with respect to the lab reference frame as we can hardly control orientation of nuclei (although it is possible in some cases).
- One way to specify the mutual orientation of two reference frames of the common origin is to use Euler angles.

- (x, y, z) axes of lab frame (1,2,3) axes of intrinsic frame
- The rotation from (x,y,z) to (x',y',z') can be decomposed into three parts: a rotation by φ about the z axis to (x", y", z"), a rotation of θ about the new y axis (y") to (x"', y"', z"'), and finally a rotation of ψ about the new z axis (z"').

Quantization

states : |I, M, K >

laboratory axes: $[J_x, J_y] = i \cdot \hbar \cdot J_z$ and cyclic permutations

$$[J^2, J_k] = 0$$
 $k = x, y, z$

quantum numbers : $J_z \to \hbar \cdot M \quad J^2 \to \hbar^2 \cdot I(I+1)$

body fixed axes: $[J_1, J_2] = i \cdot \hbar \cdot J_3$ and cyclic permutations

$$[J^2, J_i] = 0$$
 $i = 1, 2, 3$ $[J_z, J_3] = 0$

quantum numbers : $J_3 \rightarrow \hbar \cdot K \quad J^2 \rightarrow \hbar^2 \cdot I(I+1)$

Quantization

eigenstates: |I, M, K >

probability amplitude

for orientation of rotor:

$$\langle \psi, \theta, \phi | I, M, K \rangle = \left(\frac{2I+1}{8\pi^2}\right)^{1/2} D^I_{MK}(\psi, \theta, \phi)$$

Wigner D – function

$$D_{MK}^{I}(\psi,\theta,\phi) = e^{iM\psi} d_{MK}^{I}(\theta) e^{iK\phi}$$

The nucleus does not have an orientation degree of freedom with respect to the symmetry axis

States with projections K and –K are degenerated

$$\Psi_{IMK} = \left(\frac{2 \cdot I + 1}{16 \cdot \pi^2}\right)^{1/2} \cdot \left[D_{MK}^{I} \cdot \chi_{K} + (-1)^{I-K} D_{M-K}^{I} \cdot \chi_{-K}\right]$$

Particle-rotor model

The nucleus does not have an orientation degree of freedom with respect to the symmetry axis

with
$$\vec{R} = \vec{I} - \vec{j}$$

 $H_{rot} = \frac{\hbar^2}{2\mathfrak{I}_0} \{ (I_1 - j_1)^2 + (I_2 - j_2)^2 \}$
 $H_{rot} = \frac{\hbar^2}{2\mathfrak{I}_0} (I^2 - I_3^2) + \frac{\hbar^2}{2\mathfrak{I}_0} (j_1^2 + j_2^2 - j_3^2) - \frac{\hbar^2}{2\mathfrak{I}_0} (j_+ I_- + j_- I_+)$
 $f_{\pm} = I_1 \pm i \cdot I_2$ $j_{\pm} = j_1 \pm i \cdot j_2$
 $E_K(I) = \epsilon_K + \frac{\hbar^2}{2\mathfrak{I}} [I(I+1) - K^2 + \delta_{K,1/2} \cdot a \cdot (-1)^{I+1/2} (I+1/2)]$

where *a* is the so-called *decoupling parameter*

Ι

γ -rays from a deformed band in ¹⁸¹Ta

Nuclear level scheme of ¹⁸¹Ta

¹⁸¹Ta

Nilsson diagram of ¹⁸¹Ta

Coriolis band mixing calculation for the 7/2⁺[404] band in ¹⁸¹Ta

The Hamiltonian H_{rot} is the diagonal part of the rotational Hamiltonian. The eigenvalues are assumed to be given by

$$E_K(I) = \epsilon_K + \frac{\hbar^2}{2\Im} \left[I(I+1) - K^2 + \delta_{K,1/2} \cdot a \cdot (-1)^{I+1/2} (I+1/2) \right]$$

Off-diagonal terms are given by the Coriolis matrix elements

$$V_{K+1,K} = -\frac{\hbar^2}{2\Im}\sqrt{(I-K)(I+K+1)} \cdot \langle K+1|j_+|K\rangle$$

Results of Coriolis band mixing calculation for the ground-state rotational band in ¹⁸¹Ta

State				Expa	ansion coeff	icients		
[*	L_{calc} (KeV)	³⁺ ₂ [422]	$\frac{3}{2}^{+}$ [411]	$\frac{3}{2}^{+}$ [402]	⁵ / ₂ +[413]	⁵ / ₂ +[402]	⁷ / ₂ +[404]	⁹ / ₂ +[404]
7+	0.0	0.0020	-0.0027	0.0	0.0417	-0.0304	0.9987	0.0
₹ 2	136.9	0.0040	-0.0053	0.0001	0.0630	-0.0459	0.9969	-0.0025
<u>1</u> 1+	302.9	0.0065	-0.0085	0.0001	0.0818	-0.0594	0.9948	-0.0038
<u>13</u> +	497.1	0.0093	-0.0123	0.0002	0.0995	-0.0720	0.9923	0.0048
15+	718.7	0.0127	-0.0167	0.0002	0.1167	-0.0840	0.9894	-0.0058
17+	966.5	0.0163	-0.0216	0.0003	0.1335	-0.0955	0.9860	-0.0067
<u>19</u> +	1239.3	0.0209	-0.0270	0.0	0.1501	-0.1067	0.9822	-0.0076
21+ 2	1535.7	0.0251	-0.0331	0.0004	0.1664	-0.1176	0.9781	-0.0084

T. Inamura et al., Nucl. Phys. A270 (1976) 255

Reduced transition probability

expectation value $\langle \widehat{M}_{\lambda m}^{lab} \rangle = \int \Psi^* \widehat{M}_{\lambda m}^{lab} \Psi d\tau$ $\widehat{M}_{\lambda m}^{lab} = \sum_{m'} D_{mm'}^{\lambda} \widehat{M}_{\lambda m'}^{intr}$ wave function $\Psi_{IMK} = \sqrt{\frac{2I+1}{16 \cdot \pi^2}} \cdot [D_{MK}^I \cdot X_K + (-1)^{I-K} D_{M-K}^I \cdot X_{-K}]$ $\langle I_f M_f K | \widehat{M}_{\lambda m}^{lab} | I_i M_i K \rangle = \frac{\sqrt{(2I_i+1)(2I_f+1)}}{8 \cdot \pi^2} \iiint D_{M_f K}^{I_f} X_K \sum_{m'=0} D_{mm'}^{\lambda} \widehat{M}_{\lambda m'}^{intr} D_{M_i K}^{I_i} X_K d\tau$

$$\iiint D_{M_1M_1'}^{I_1} D_{M_2M_2'}^{I_2} D_{M_3M_3'}^{I_3} d\tau = \frac{8\pi^2}{2I_3 + 1} \cdot \left(I_1I_2M_1M_2 \mid I_3M_3\right) \cdot \left(I_1I_2M_1'M_2' \mid I_3M_3'\right)$$

$$\langle I_f M_f K | \widehat{M}_{\lambda m}^{lab} | I_i M_i K \rangle = \sqrt{\frac{2I_i + 1}{2I_f + 1}} \cdot \left(I_i \lambda M_i (M_f - M_i) | I_f M_f \right) \cdot \left(I_i \lambda K 0 | I_f K \right) \cdot \left\langle X_K | \widehat{M}_{\lambda 0}^{intr} | X_K \right\rangle$$

Reduced transition probability

$$\left\langle I_{f}M_{f}K\left|\widehat{M}_{\lambda m}^{lab}\right|I_{i}M_{i}K\right\rangle = \sqrt{\frac{2I_{i}+1}{2I_{f}+1}}\cdot\left(I_{i}\lambda M_{i}\left(M_{f}-M_{i}\right)\left|I_{f}M_{f}\right)\cdot\left(I_{i}\lambda K0\left|I_{f}K\right)\cdot\left\langle X_{K}\right|\widehat{M}_{\lambda 0}^{intr}\left|X_{K}\right\rangle\right)$$

Wigner-Eckart-Theorem (reduction of an expectation value):

$$\left\langle I_f M_f K \left| \widehat{M}_{\lambda m}^{lab} \right| I_i M_i K \right\rangle = \frac{\left(I_i \lambda M_i \left(M_f - M_i \right) \left| I_f M_f \right) \right.}{\sqrt{2I_f + 1}} \cdot \left\langle I_f K \left\| \widehat{M}_{\lambda}^{lab} \right\| I_i K \right\rangle$$

 $\left\langle I_{f}K \| M(E\lambda) \| I_{i}K \right\rangle = \sqrt{2I_{i} + 1} \left(I_{i}\lambda K 0 \left| I_{f}K \right) \cdot \left\langle X_{K} \right| \widehat{M}_{\lambda 0}^{intr} \left| X_{K} \right\rangle \right)$

special case: E2 transition $I \rightarrow I-2$

$$\langle I-2, K \| M(E2) \| I, K \rangle = \sqrt{\frac{15}{32\pi}} \cdot \sqrt{\frac{(I+K-1)\cdot(I+K)\cdot(I-K-1)\cdot(I-K)}{(I-1)\cdot(2I-1)\cdot I}} \cdot Q_2 e$$

reduced transition probability:

$$B(E\lambda; I_i \to I_f) = \frac{1}{2I_i + 1} \left| \left\langle I_f K \| M(E\lambda) \| I_i K \right\rangle \right|^2$$

special case: E2 transition $I \rightarrow I-2$

$$\langle I-2, K \| M(E2) \| I, K \rangle = \sqrt{\frac{15}{32\pi}} \cdot \sqrt{\frac{(I+K-1)\cdot(I+K)\cdot(I-K-1)\cdot(I-K)}{(I-1)\cdot(2I-1)\cdot I}} \cdot Q_2 e^{-\frac{1}{2}}$$

reduced transition probability:

$$B(E\lambda; I_i \to I_f) = \frac{1}{2I_i + 1} \left| \left\langle I_f K \| M(E\lambda) \| I_i K \right\rangle \right|^2$$

$$\frac{Q_2(9/2^-)}{Q_2(7/2^+)} = (0.9681 \pm 0.0002)$$

M. Loewe; dissertation

Matrix elements

$$\langle I - 2, K \| M(E2) \| I, K \rangle = \sqrt{\frac{15}{32\pi}} \cdot \sqrt{\frac{(I + K - 1) \cdot (I + K) \cdot (I - K - 1) \cdot (I - K)}{(I - 1) \cdot (2I - 1) \cdot I}} \cdot Q_2 e$$

$$\langle I - 1, K \| M(E2) \| I, K \rangle = -\sqrt{\frac{5}{16\pi}} \cdot \sqrt{\frac{3 \cdot (I + K) \cdot (I - K) \cdot K^2}{(I - 1) \cdot I \cdot (I + 1)}} \cdot Q_2 e$$

$$\langle I, K \| M(E2) \| I, K \rangle = -\sqrt{\frac{5}{16\pi}} \cdot \sqrt{\frac{2I + 1}{(2I - 1) \cdot I \cdot (I + 1) \cdot (2I + 3)}} \cdot (I^2 - 3K^2 + I) \cdot Q_2 e$$

$$\langle I-1, K \| M(M1) \| I, K \rangle = -\sqrt{\frac{3}{4\pi}} \sqrt{\frac{(I+K)(I-K)}{I}} \cdot K \cdot (g_K - g_R) \left[1 + \delta_{K,1/2} (-1)^{I+1/2} b_0 \right] \mu_N$$

The quantity b_0 depends on the magnetic decoupling parameter

$$\mu(7/2^{+}) = 2.3705 \pm 0.0007$$
$$\mu = \frac{K}{I+1} \cdot (g_{K} - g_{R}) \cdot K + g_{R} \cdot I$$
$$g_{R} = 0.313(5)$$
$$g_{K} = 0.782(2)$$

 $\mu(9/2^{-}) = 5.28 \pm 0.09$ ${}^{9/2^{-}}(g_{K} - g_{R}) = \frac{22}{81} \left({}^{9/2^{-}}\mu - {}^{7/2^{+}}\mu \frac{9}{7} + {}^{7/2^{+}}(g_{K} - g_{R}) \frac{7}{2} \right)$ ${}^{9/2^{-}}(g_{K} - g_{R}) \approx {}^{7/2^{+}}(g_{K} - g_{R}) \frac{77}{81} + 0.606 = 1.052$

$$13/2^{+} \qquad 0.495 \ \tau = 9.1 \pm 1.2 \ ps \qquad \tau = \left\{ \sum_{K} \sum_{\ell} \left[\varepsilon_{N \to K}^{2}(\lambda) + \delta_{N \to K}^{2}(\lambda) \right] \right\}^{-1}$$

$$11/2^{+} \qquad 0.302 \ \tau = 23.1 \pm 4.3 \ ps \qquad \tau = \frac{T_{1/2}}{ln2}$$

$$9/2^{+} \xrightarrow{E2 + M1} \qquad 0.136 \ \tau = 57.0 \pm 2.3 \ ps \qquad \tau = \frac{T_{1/2}}{ln2}$$

$$7/2^{+} \xrightarrow{E2 + M1} \qquad 0.0$$

$$\delta_{N \to M}(\lambda) = \left\{ \frac{8\pi(\lambda + 1)}{\lambda[(2\lambda + 1)!!]^{2} \hbar} \left(\frac{\hbar\omega}{\hbar c} \right)^{2\lambda + 1} \right\}^{1/2} \cdot (2I_{N} + 1)^{-1/2} \cdot \langle I_{M} || \mathcal{M}(\lambda) || I_{N} \rangle$$

$$\delta_{N \to M}(E2) = \{1.225 \cdot 10^{13} \cdot E_{Y}^{5} (MeV)^{5} \}^{1/2} \cdot (2I_{n} + 1)^{-1/2} \cdot \langle I_{M} || \mathcal{M}(E2) || I_{N} \rangle$$

$$\delta_{N \to M}(M1) = \{1.758 \cdot 10^{13} \cdot E_{Y}^{3} (MeV)^{3} \}^{1/2} \cdot (2I_{n} + 1)^{-1/2} \cdot \langle I_{M} || \mathcal{M}(M1) || I_{N} \rangle$$

$$\varepsilon_{N \to M}^{2}(\ell) = \delta_{N \to M}^{2}(\ell) \cdot \alpha_{N \to M}(\ell) \qquad \text{conversion coefficient: bric.anu.edu.au}$$

T. Inamura et al., Nucl. Phys. A270 (1976) 255

)

$$13/2^{+} 0.495 \ \tau = 9.1 \pm 1.2 \ ps \qquad \tau = \left\{ \sum_{K} \sum_{\ell} \left[\varepsilon_{N \to K}^{2}(\lambda) + \delta_{N \to K}^{2}(\lambda) \right] \right\}^{-1}$$

$$11/2^{+} 0.302 \ \tau = 23.1 \pm 4.3 \ ps \qquad \tau = \frac{T_{1/2}}{\ln 2}$$

$$9/2^{+} \underbrace{E_{2} + M_{1}}_{E_{2} + M_{1}} 0.136 \ \tau = 57.0 \pm 2.3 \ ps \qquad \tau = \frac{T_{1/2}}{\ln 2}$$

$$9/2^{+} \underbrace{E_{2} + M_{1}}_{181\text{Ta}} 0.00 \qquad (21+1)^{-1/2} \ < I-1/M()/I> \ delta \ \alpha_{T} \quad \varepsilon^{2} \quad \tau \qquad (ps) \qquad$$

Oddproton-even nuclei

		μ	$(g_{K}-g_{R})$	B(M1)W.u.	$(g_{K}-g_{R})$
¹⁵³ Eu	5/2+	+1.5324(3)	0.551	0.00608(28)	0.185
¹⁵⁹ Tb	3/2+	+2.014(4)	1.556	0.173(8)	1.471
¹⁶⁵ Ho	7/2-	+4.177(5)	1.012	0.275(14)	0.973
¹⁶⁹ Tm	1/2+	-0.2316(15)		0.0342(8)	
¹⁷⁵ Lu	7/2+	+2.2327(11)	0.298	0.0354(14)	0.349
¹⁸¹ Ta	7/2+	+2.3705(7)	0.352	0.068(4)	0.484
¹⁸⁵ Re	5/2+	+3.1871(3)	1.217	0.28(5)	1.252
¹⁸⁷ Re	5/2+	+3.2197(3)	1.242	0.260(18)	1.206

Ta-nuclei: level schemes

Hans-Jürgen Wollersheim - 2023

GSI

¹⁸⁷Ta level scheme

Hans-Jürgen Wollersheim - 2023

y = -6.5 * x + 17

GSI

\mathbf{E}_{γ}	ΔE_{γ}	γ-intensity		α_{tot}	intensity	S.J. Steer	$T_{1/2}\left(\mu s\right)$
154	3.2	149.5 ± 14.1	100%	0.734	E1:119/E2:173	100%	1.09(4)
199	4.2	67.1±9.0	44.9 ± 7.4	0.303	58.5 ± 9.6		
198	2.5	32.3±9.6	21.6 ± 6.7	0.308	28.3 ± 8.8		
200.5	2.5	31.1±9.6	20.8 ± 6.7	0.295	26.9 ± 8.7		
247.2	1.8	36.9±7.1	24.7 ± 5.3	0.149	28.4 ± 6.1		
284.6	2.4	37.5±8.3	25.5 ± 6.0	0.025	E1:26.1±6.2	73±22	1.16(7)
342.7	2.6	29.4±7.0	19.7 ± 5.0	0.056	20.8 ± 5.3	47±16	
389.3	2.5	$110.5{\pm}10.9$	73.9±10.1	0.039	76.8±10.4	80±24	1.08(6)
481	3.2	131.6±12.5	88.0±11.8	0.022	90±12	97±28	1.12(7)
83							0.202(12)
134							0.284(11)

gate										
481		154					284	389		-
389		154					284	-		481
284		154					-	389		481
343		154	199	246	-					
246		154	199	-	343	370			453	481
199		154	-					389		481
154	134	154		246	343		284	389		481
134										

PhD-thesis: Sultan Alhomaidhi

y = -6.5 * x + 16.6

Ta-nuclei: level schemes

y = -6.5 * x + 17

Prolate-oblate shape transition

12.0 m 0+

Pt190 6.5E11 0+

112

3.5 m 0+

Hg190 20.0 m 0+

Pt188 10.2 d 0+

110

2.35 h 3/2-

108

11192 11193 9.6 m 21.6 m (2-) 1/2+

1g191 Hg192 49 m 4.35 h (3/2-) 0+

* EC	37 m 0+ ,a	⁸ m ^{3/2-} * EC	2.40 h 0+ EC	90 m 3/2- * EC	21.5 h 0+ EC	9.33 h 5/2- * EC	5.25E4 y 0+ EC,a	51.873 h 5/2- #	1.4E17 y 0+ * 1.4	1.53E+7 y 5/2- ± EC	0+ 24.1	1/2- 22.1	0+ 52.4
*]	1195 1161 1/2+	TI196 1.84 h 2-	T1197 2.84 h 1/2+	T1198 5.3 h 2-	T1199 7.42 h 1/2+	T1200 26.1 h 2- *	TI201 72.912 h 1/2+	T1202 12.23 d 2-	T1203 1/2+	T1204 3.78 y 2-	TI205 1/2+	T1206 4.199 m 0- *	T1207 4.77 m 1/2+
EC	[g194 444 y 0+	EC Hg195 9.9 h 1/2-	EC Hg196 0+	EC Hg197 64.14 h 1/2-	EC Hg198 0+	EC Hg199 1/2-	EC Hg200 0+	EC Hg201 3/2-	29.524 Hg202 0+	EC.B Hg203 46.612 d 5/2-	70.476 Hg204 0+	β ⁻ Hg205 5.2 m 1/2-	β Hg206 8.15 m 0+
* EC	u193 7.65 h	EC Au194 38.02 h	015 Au195 186.09 d	EC Au196 6.183 d	9.97 Au197	16.87 Au198 2.69517 d	2310 Au199 3.139 d	1318 Au200 48.4 m	29.86 Au201 26 m	β Au202 28.8 :	6137 Au203 53 :	β Au204 39.8 :	β Au205 31 :
* EC	^{3/2+} +	EC *	3/2+ * EC P(194	2- ες,β P(195	^{3/2+} * 100 Pt196	β· Pt197	3/2+ β· Pt198	β ⁻ * Pt199	3/2+ β· Pt200	(1-) β· Pt201	3/2+ β· Pt202	(2-) β'	(3/2+) β·
	0+ 0.79 -101	1/2- *	0+ 32.9 T=103	1/2- 33.8	0+ 253	1/2- ± β·	0+ 7.2	5/2- ± β·	0+ β·	2.5 m (5/2-) β·	44 n 0+ β'		126
÷	3/2+ 37.3	73.831 d 4(+) ΣC_β·	3/2+ 62.7	19.28 h 1- β	2.5 h 3/2+ β	52 s (0-) *	5.8 m 3/2+ β	8: β·	1177		124		
* C	0s190	Os191 15.4 d 9/2- *	0s192	Os193 30.11 h 3/2-	Os194 6.0 y 0+	Os195 6.5 m	Os196 34.9 m 0+		122	, ,			
κ *	le189 24.3 h 5/2+	Re190 3.1 m (2)- *	Re191 9.8 m (3/2+,1/2+) β [.]	Re192 16:	118	-	120)					
β	V188 89.4 d 0+	W189 11.5 m (3/2-) β·	W190 30.0 m 0+ β [.]			is	sotop	be		β		γ	
1	14	- [116	,			¹⁸² W	7	0.2	274		11.4	0
							¹⁸⁴ W	7	0.2	258		13.8	0
							¹⁸⁶ W	7	0.2	223		15.9	0
						-	¹⁸⁶ O	5	0.1	196		16.5	0
						-	¹⁸⁸ O:	8	0. 1	185		19.2	0
							¹⁹⁰ O:	5	0. 1	184		22.3	0
							¹⁹² O	5	0. 1	168		25.2	0
							¹⁹² P1	t	0. 1	146		-	
							¹⁹⁴ Pt	t	0. 1	134		-	
							¹⁹⁶ P1	t	0. 1	135		-	
						1	¹⁹⁸ H	g	0. 1	106		36.3	0
						2	²⁰⁰ H	g	0.0)98		39.1	0
						2	²⁰² Hg	g	0.0)82		33.4	0
						2	²⁰⁴ H	g	0.0)68		31.5	0
		_											

GSĬ

n-rich hafnium ground states

Robledo et al., J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).

Band crossing prediction in ¹⁸⁰Hf

¹⁸⁰Hf oblate band?

three 20⁺ states

Tandel et al., Phys. Rev. Lett. 101 (2008) 182503 with Gammasphere pre-Gammasphere high-K yrast isomers:

¹⁹⁰Hf TRS oblate rotor beyond the critical point

Xu et al., unpublished

Hf prolate vs oblate

Nilsson single-particle diagram \bigcirc N = 116 (¹⁸⁸Hf, ¹⁹⁰W, ¹⁹²Os)

GSİ

$$\langle I-2, K \| M(E2) \| I, K \rangle = \sqrt{\frac{15}{32\pi}} \cdot \sqrt{\frac{(I+K-1)\cdot(I+K)\cdot(I-K-1)\cdot(I-K)}{(I-1)\cdot(2I-1)\cdot I}} \cdot Q_2 e$$

	$< I_f M(E2) I_i>$	Q ₂ (b)
¹⁶² Dy	2.32±0.02 eb	7.36±0.03
¹⁶³ Dy	2.31±0.02 eb	7.29±0.12
¹⁶⁴ Dy	2.38±0.01 eb	7.54 ± 0.04
¹⁶⁶ Er	2.42±0.01 eb	7.67±0.03
¹⁶⁷ Er	2.24±0.01 eb	7.60±0.10
¹⁶⁸ Er	2.40±0.02 eb	7.61±0.06

Er150 18.5 s	Er151 23.5 s	Er152 10.3 s	Er153 37.1 s	Er154 3.73 m	Er155 5.3 m	Er156 19.5 m	Er157 18.65 m	Er158 2.29 h	Er159 36 m	Er160 28.58 h	Er161 3.21 h	Er162	Er163 75.0 m	Er164	Er165 10.36 h	Er166	Er167	Er168	Er169 9.40 d	Er170	Er171 7.516 h	Er172 49.3 h	Er173 14 m	Er174 3.3 m	Er175 1.2 m
0+	(7/2-) ÷	0+	(7/2-)	0+	7/2-	0+	3/2- ÷	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+	7/2+ *	0+	1/2-	0+	5/2-	0+	(7/2-)	0+	(9/2+)
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6	22.95	26.8	β·	14.9	β	β·	β·	β·	ß
Hol49	Hol50	Hol51	Hol52	Hol53	Hol54	Hol55	Hol56	Hol57	Hol58	Ho159	Ho160	Hol61	Hol62	Hol63	Hol64	Hol65	Ho166	Hol67	Ho168	Hol69	Ho170	Ho171	Hol72	Ho173	Ho174
21.1 5	72 s	35.2 s	161.8 s	2.01 m	11.76 m	48 m	56 m	12.6 m	11.3 m	33.05 m	25.6 m	2.48 h	15.0 m	4570 y	29 m		26.83 h	3.1 h	2.99 m	4.7 m	2.76 m	53 s	25 s		
(11/2-) *	2- *	(11/2-) *	2- *	11/2- *	(2)- *	5/2+	(4+) *	7/2-	5+ *	7/2- *	5+ *	7/2- *	1+ +	7/2- *	1+ +	7/2-	0. +	7/2-	3+ +	7/2-	(6+) ±	(7/2-)			
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,B	100	β·	β	β·	β	β	β·	β·		
Dy148	Dy149	Dy150	Dy151	Dy152	Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164	Dy165	Dy166	Dy167	Dy168	Dy169	Dy170	Dy171	Dy172	Dy173
3.1 m	4.20 m	7.17 m	17.9 m	2.38 h	6.4 h	3.0E+6 y	9.9 h		8.14 h		144.4 d						2.334 h	81.6 h	6.20 m	8.7 m	39 s				
0+	(7/2-) +	0+	7/2(-)	0+	7/2(-)	0+	3/2-	0+	3/2- +	0+	3/2-	0+	5/2+	0+	5/2-	0+	7/2+	0+	(1/2-)	0+	(5/2-)	0+		0+	
EC	EC	EC.a	EC.a	EC.a	a	a	EC	0.05	EC	0 10	EC	234	18.9	25.5	74 9	78.7	B	B	B	B	B				

$$\langle I - 2, K \| M(E2) \| I, K \rangle = \sqrt{\frac{15}{32\pi}} \cdot \sqrt{\frac{(I + K - 1) \cdot (I + K) \cdot (I - K - 1) \cdot (I - K)}{(I - 1) \cdot (2I - 1) \cdot I}} \cdot Q_2 e$$

$$\langle I - 1, K \| M(E2) \| I, K \rangle = -\sqrt{\frac{5}{16\pi}} \cdot \sqrt{\frac{3 \cdot (I + K) \cdot (I - K) \cdot K^2}{(I - 1) \cdot I \cdot (I + 1)}} \cdot Q_2 e$$

¹⁶³Dy:
$$\frac{B(E2; 5/2 \to 7/2)}{B(E2; 5/2 \to 9/2)} = 2.76 \pm 0.14 (2.86_{theo})$$

¹⁶⁷Er:
$$\frac{B(E2; 7/2 \rightarrow 9/2)}{B(E2; 7/2 \rightarrow 11/2)} = 3.81 \pm 0.15 (3.89_{theo})$$

Er150	Er151	Er152	Er153	Erl54	Erl55	Er156	Erl57	Er158	Er159	Er160	Er161	Er162	Er163	Er164	Er165	Er166	Er167	Er168	Er169	Er170	Er171	Er172	Er173	Er174	Er175
0+	(7/2-)	0+	(7/2-)	0+	7/2-	0+ 0+	3/2-	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+	7/2+	0+	9.40 a 1/2-	0+	5/2-	49.5 E 0+	(7/2-)	0+	(9/2+)
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6	22.95	26.8	β·	14.9	β	β·	β·	β·	β
Hol49	Hol50	Hol51	Hol52	Hol53	Hol54	Hol55	Hol56	Hol57	Hol58	Hol59	Ho160	Hol61	Hol62	Hol63	Hol64	Hol65	Ho166	Hol67	Ho168	Ho169	Ho170	Ho171	Hol72	Hol73	Ho174
01/2.)	72 5	35.2 s	161.8 s	2.01 m 11/2	11.76 m	48 m 5/2+	20 m (4+)	12.6 m 7/2-	11.3 m 5+	33.05 m 7/2-	25.6 m 5+	2.48 h	15.0 m 1+	4570 y	29 m 1+	7/2_	26.83 h	3.1 h 7/2-	2.99 m 3+	4.7 m 7/2	2.76 m (6+)	53 s (7/2.)	25 s		
±	*	*	*	÷	*		*	-	÷. *	÷	*	÷	*	÷	*		÷		÷		÷ (**) ±	1			
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,p	100	b.	þ.	b.	þ.	b.	b.	p .		
Dy148	Dy149	Dy150	Dy151	Dy152	Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164	Dy165	Dy166	Dy167	Dy168	Dy169	Dy170	Dy171	Dy172	Dy173
3.1 m	4.20 m	7.17 m	17.9 m	2.38 h	6.4 h	3.0E+6 y	9.9 h		8.14 h		144.4 d						2.334 h	81.6 h	6.20 m	8.7 m	39 s		1		
0+	(7/2-) +	0+	7/2(-)	0+	7/2(-)	0+	3/2-	0+	3/2- +	0+	3/2-	0+	5/2+	0+	5/2-	0+	7/2+ +	0+	(1/2-)	0+	(5/2-)	0+	()	0+	
EC	EC	EC.a	EC.a	EC.a	a	a	EC	0.06	EC	0.10	EC	2.34	18.9	25.5	24.9	28.2	B	B	B	B	B		()		

$$\frac{11}{2}$$
 0.282 $\tau = 0.38 \pm 0.07 \, ns$

$$\tau = \left\{ \sum_{K} \sum_{\ell} \left[\varepsilon_{N \to K}^{2}(\ell) + \delta_{N \to K}^{2}(\ell) \right] \right\}^{-1}$$

$$9/2^{-}$$
 0.167 $\tau = 0.49 \pm 0.09 \, ns$

$$7/2^{-}$$
 0.073 $\tau = 2.18 \pm 0.07$ ns
 $5/2^{-}$ 0.0

$$^{163}\text{Dy}$$

$$\delta_{N \to M}(\ell) = \left\{ \frac{8\pi(\ell+1)}{\ell[(2\ell+1)!!]^2} \frac{1}{\hbar} \left(\frac{\hbar\omega}{\hbar c}\right)^{2\ell+1} \right\}^{1/2} \cdot (2I_N+1)^{-1/2} \cdot \langle I_M \| \mathcal{M}(\ell) \| I_N \rangle$$

$$\delta_{N \to M}(E2) = \left\{ 1.225 \cdot 10^{13} \cdot E_{\gamma}^{5} (MeV)^{5} \right\}^{1/2} \cdot (2I_{n} + 1)^{-1/2} \cdot \langle I_{M} \| \mathcal{M}(E2) \| I_{N} \rangle$$

 $\delta_{N \to M}(M1) = \left\{ 1.758 \cdot 10^{13} \cdot E_{\gamma}^{3} (MeV)^{3} \right\}^{1/2} \cdot (2I_{n} + 1)^{-1/2} \cdot \langle I_{M} \| \mathcal{M}(M1) \| I_{N} \rangle$

 $\varepsilon_{N \to M}^2(\ell) = \delta_{N \to M}^2(\ell) \cdot \alpha_{N \to M}(\ell)$

conversion coefficient .: bricc.anu.edu.au

Er150 18.5 ;	Er151 23.5 :	Er152 10.3 5	Er153 37.1 s	Er154 3.73 m	Er155 5.3 m	Er156 19.5 m	Er157 18.65 m	Er158 2.29 h	Er159 36 m	Er160 28.58 h	Er161 3.21 h	Er162	Er163 75.0 m	Er164	Er165 10.36 h	Er166	Er167	Er168	Er169 9.40 d	Er170	Er171 7.516 h	Er172 49.3 h	Er173	Er174 3.3 m	Er175
0+	(7/2-) *	0+	(7/2-)	0+	7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+	7/2+ *	0+	1/2-	0+	5/2-	0+	(7/2-)	0+	(9/2+)
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6	22.95	26.8	β·	14.9	β	β	β·	β·	ß
Ho149	Hol50	Hol51	Hol52	Hol53	Hol54	Hol55	Hol56	Hol57	Hol58	Hol59	Hol60	Hol61	Hol62	Hol63	Hol64	Hol65	Hol66	Ho167	Hol68	Ho169	Ho170	Ho171	Ho172	Ho173	Ho174
21.1 5	72 s	35.2 s	161.8 5	2.01 m	11.76 m	48 m	56 m	12.6 m	11.3 m	33.05 m	25.6 m	2.48 h	15.0 m	4570 y	29 m		26.83 h	3.1 h	2.99 m	4.7 m	2.76 m	53 s	25 s		
(11/2-) +	2- +	(11/2-) +	2- +	11/2- +	(2)- +	5/2+	(4+) ÷	7/2-	5+ +	7/2- *	5+ +	7/2- +	1+ +	7/2- +	1+ +	7/2-	0- +	7/2-	3+ +	7/2-	(6+) +	(7/2-)			
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,B	100	β·	β	β·	β·	β	β	β·		
Dy148	Dy149	Dy150	Dy151	Dy152	Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164	Dy165	Dy166	Dy167	Dy168	Dy169	Dy170	Dy171	Dy172	Dy173
3.1 m	4.20 m	7.17 m	17.9 m	2.38 h	6.4 h	3.0E+6 y	9.9 h		8.14 h		144.4 d						2.334 h	81.6 h	6.20 m	8.7 m	39 s				
0+	(7/2-) *	0+	7/2(-)	0+	7/2(-)	0+	3/2-	0+	3/2- *	0+	3/2-	0+	5/2+	0+	5/2-	0+	7/2+ *	0+	(1/2-)	0+	(5/2-)	0+		0+	
EC	EC	EC,a	EC,a	EC,a	a	a	EC	0.06	EC	0.10	EC	2.34	18.9	25.5	24.9	28.2	B	B	B-	B	β·				

$$\frac{11}{2}$$
 0.282

$$\tau = \left\{ \sum_{K} \sum_{\ell} \left[\varepsilon_{N \to K}^{2}(\ell) + \delta_{N \to K}^{2}(\ell) \right] \right\}^{-1}$$

$$9/2^{-}$$
 0.167 $\tau = 0.49 \pm 0.09 \, ns$

$$7/2^{-}$$
 0.073 $\tau = 2.18 \pm 0.07$ ns
 $5/2^{-}$ 0.0
 163 Dy

Er150 18.5 ;	Er151 23.5 :	Er152	Er153 37.1 :	Er154 3.73 m	Er155 5.3 m	Er156 19.5 m	Er157 18.65 m	Er158 2.29 h	Er159 36 m	Er160 28.58 h	Er161 3.21 h	Er162	Er163 75.0 m	Er164	Er165 10.36 h	Er166	Er167	Er168	Er169 9.40 d	Er170	Er171 7.516 h	Er172 49.3 h	Er173	Er174 3.3 m	Er175
0+	(7/2-) *	0+	(7/2-)	0+	7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+	7/2+ *	0+	1/2-	0+	5/2-	0+	(7/2-)	0+	(9/2+)
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6	22.95	26.8	β·	14.9	ß	β	β·	β	β·
Ho149	Hol50	Hol51	Hol52	Hol53	Hol54	Hol55	Hol56	Hol57	Hol58	Hol59	Hol60	Hol61	Hol62	Hol63	Hol64	Hol65	Hol66	Hol67	Ho168	Ho169	Ho170	Ho171	Hol72	Ho173	Ho174
21.1 5	72 s	35.2 s	161.8 s	2.01 m	11.76 m	48 m	56 m	12.6 m	11.3 m	33.05 m	25.6 m	2.48 h	15.0 m	4570 y	29 m		26.83 h	3.1 h	2.99 m	4.7 m	2.76 m	53 s	25 s		
(11/2-) *	2- *	(11/2-) *	2- *	11/2- *	(2)- *	5/2+	(4+) ÷	7/2-	5+ *	7/2- *	5+ *	7/2- *	1+ +	7/2- *	1+ *	7/2-	0- +	7/2-	3+ +	7/2-	(6+) *	(7/2-)			
EC	EC	EC,a	EC,a	EC,a	EC,a	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,B	100	ß	β·	β·	β	ß	β	β		and the second
Dy148	Dy149	Dy150	Dy151	Dy152	Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164	Dy165	Dy166	Dy167	Dy168	Dy169	Dy170	Dy171	Dy172	Dy173
3.1 m	4.20 m	7.17 m	17.9 m	2.38 h	6.4 h	3.0E+6 y	9.9 h		8.14 h		144.4 d						2.334 h	81.6 h	6.20 m	8.7 m	39 s				
0+	(7/2-) +	0+	7/2(-)	0+	7/2(-)	0+	3/2-	0+	3/2- ÷	0+	3/2-	0+	5/2+	0+	5/2-	0+	7/2+ +	0+	(1/2-)	0+	(5/2-)	0+		0+	
EC	EC	EC.a	EC,a	EC.a	a	a	EC	0.06	EC	0.10	EC	2.34	18.9	25.5	24.9	28.2	B	B	ß	B	ß				

$$13/2^{+}$$
 0.295 $\tau = 0.38 \pm 0.07 \, ns$

$$\tau = \left\{ \sum_K \sum_\ell [\varepsilon_{N \to K}^2(\ell) + \delta_{N \to K}^2(\ell)] \right\}^{-1}$$

GSİ

$$11/2^{+}$$
 0.178 $\tau = 0.49 \pm 0.09 \, ns$

$$9/2^{+}$$
 0.079 $\tau = 2.18 \pm 0.07$ ns
 $7/2^{+}$ 0.0

¹⁶⁷Er

Spin I	E_{γ} (MeV)	$(2I+1)^{-1/2}$	<i-1 i="" m()=""></i-1>	delta	α_{T}	ϵ^2	τ (ns)
7/2	0.0734	0.3536	-3.886 (E2)	-7019.1	8.9	$4.38 \cdot 10^8$	2.05
			0.108 (M1)	3183.7	5.7	$5.78 \cdot 10^{7}$	1.80
9/2	0.0939	0.3162	-4.002 (E2)	-11968	3.4	$4.87 \cdot 10^8$	1.59
			0.153 (M1)	5837.1	2.9	9.88·10 ⁷	1.31
	0.167	0.3162	2.299 (E2)	29133	0.4	$3.65 \cdot 10^8$	0.51

Appendix: Spherical harmonics

$$Y_{00}(\theta,\phi) = \frac{1}{\sqrt{4\pi}}$$

$$Y_{10}(\theta,\phi) = \frac{1}{2} \cdot \sqrt{\frac{3}{\pi}} \cdot \cos \theta$$

$$Y_{1\pm1}(\theta,\phi) = m\frac{1}{2} \cdot \sqrt{\frac{3}{2\pi}} \cdot \sin \theta \cdot e^{\pm i\phi}$$

$$Y_{20}(\theta,\phi) = \sqrt{\frac{5}{16\pi}} \cdot (3 \cdot \cos^2 \theta - 1)$$

$$Y_{2\pm1}(\theta,\phi) = m\sqrt{\frac{15}{8\pi}} \cdot \sin \theta \cdot \cos \theta \cdot e^{\pm i\phi}$$

$$Y_{2\pm2}(\theta,\phi) = \sqrt{\frac{15}{32\pi}} \cdot \sin^2 \theta \cdot e^{\pm 2i\phi}$$

$$Y_{30}(\theta,\phi) = \sqrt{\frac{7}{16\pi}} \cdot (2\cos^3 \theta - 3\cos \theta \sin^2 \theta)$$

$$Y_{3\pm1}(\theta,\phi) = m\sqrt{\frac{21}{64\pi}} \cdot (4\cos^2 \theta \sin \theta - \sin^3 \theta) \cdot e^{\pm i\phi}$$

$$Y_{3\pm2}(\theta,\phi) = \sqrt{\frac{105}{32\pi}} \cdot \cos \theta \sin^2 \theta \cdot e^{(\pm 2)i\phi}$$

$$Y_{3\pm3}(\theta,\phi) = m\sqrt{\frac{35}{64\pi}} \cdot \sin^3 \theta \cdot e^{(\pm 3)i\phi}$$

GSĬ

