Outline: Rotational Spectroscopy

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. rotational bands
- 2. band crossings
- 3. backbending
- 4. rotational alignment

At the center of the atom is a nucleus formed from po At nucleons-protons and neutrons. Each nucleon is made from three **quarks** held together by their strong interactions, which are mediated by gluons. In turn, the

The interactions, which are mediated by gluons. In turn, the nucleus is held together by the strong interactions between the gluon and quark constituents of neighboring nucleons. Nuclear physicists often use the exchange of mesons-particles which consist of a quark and an antiquark, such as the pion-to describe interactions among the nucleons.

neutron -10⁻¹⁵ m proton ~

strong field

Rn

quark <10⁻¹⁹m

electromagnetic

field

Why study nuclear structure?

Studying exotic nuclei extends the range over which theories can be tested

Goal: Establish the physical properties of exotic nuclei and their interactions (reactions) to constrain theory and improve predictive power

Physical properties

Mass, decay lifetime, production cross-section, electric and magnetic moments, excited state properties (moments, energies, lifetimes), etc...

Note \rightarrow the observables in an experiment may or may not require interpretation to relate to physical properties

Feynman diagrams

Level schemes – collective versus single particle

Rotational bands: sequences of excited states

GSĬ

Rotational bands in ¹⁶⁰Dy: sequences of excited states

GSİ

Rotation of deformed nuclei

Laboratory axis rotational axis \perp symmetry axis Ζ I+14 $E(I) = \frac{\hbar^2}{2\Im} [I(I+1) - K^2]$ Μ R kinematic moment of inertia I+12 ΩK $\mathfrak{I}^{(1)} = I \cdot \left(\frac{\partial E}{\partial I}\right)^{-1} = \frac{I}{\hbar\omega} \approx \frac{\Delta I(I)}{E_{\chi}}$ Symmetry axi I+10 dynamic moment of inertia $\mathfrak{I}^{(2)} = \left(\frac{\partial^2 E}{\partial I^2}\right)^{-1} = \frac{\partial I}{\hbar \partial \omega} = \frac{(\Delta I)^2}{\Delta E_{\gamma}}$ I+8rigid rotor: $\mathfrak{I}^{(2)} = \mathfrak{I}^{(1)}$ I+6 I+4J (2) [h²MeV⁻¹] 09 09 09 09 I+2rotational frequency $\hbar\omega = \frac{\partial E}{\partial I} \approx \frac{E}{\Lambda I}$ superdeformed ¹⁵²Dy 20 0 L 300 700 80(400 500 600 ħω [keV]

GSI

Rotational bands

- Rotation can exist on top of other excitations
- As such, a nucleus can have several different rotational bands and the moment of inertia 3 is often different for different bands
- The different 3 lead to different energy spacings for the different bands

Rotational bands

Rotational bands: Backbending

- The different 3 for different rotational bands creates the so-called "backbend"
- This is when we follow the lowest-energy state for a given spin-parity ("yrast" state) belonging to a given rotational band and plot the moment of inertia and square of the rotational frequency

at high spin \rightarrow break up of J=0 pair, reduction of the moment of inertia

$$\frac{2\Im}{\hbar^2} = \frac{4I - 2}{E_{\gamma}}$$
$$\hbar\omega \cong \frac{E_{\gamma}}{2}$$

$$E_{\gamma} = E(I) - E(I-2)$$
 $E_{rot} = \frac{\hbar^2}{2\Im}I(I+1) = \frac{1}{2}\Im\omega^2$

65

at high spin \rightarrow break up of J=0 pair, reduction of the moment of inertia

$$H_{rot} = \frac{\hbar^2}{2\Im} \cdot \vec{R}^2 = \frac{\hbar^2}{2\Im} \left(\vec{I} - \vec{j}\right)^2$$

$$\vec{R}^2 = \left(\vec{I} - \vec{j}\right)^2 = \vec{I}^2 - 2 \cdot \vec{I} \cdot \vec{j} + \vec{j}^2$$
$$= I^2 + j^2 - 2K^2 - (I_+j_- + I_-j_+)$$

Illustration of the "rotational alignment" effect where a pair of high- \mathbf{j} quasi-particles in timereversed orbits at a critical rotational frequency are broken and align themselves with the collective rotation, \mathbf{R} , of the nucleus as a whole leading to the "backbending" effect in nuclei

where $I_{\pm} = I_x \pm i \cdot I_y$, $j_{\pm} = j_x \pm i \cdot j_y$ and $j_z = I_z = \pm K$ The quantity **K** is the projection of **I** along the rotational axis.

The coupling term $(I_+j_- + I_-j_+)$ corresponds to the Coriolis force and couples \vec{j} to \vec{R}

Rotational alignment

$$I_{x}(I) = \sqrt{I(I+1)} \approx I + 0.5 \qquad I_{x}(I) = R(\omega(I)) + i = \Im \cdot \omega + i$$

$$\hbar \omega (I_{x}(I-1)) = \frac{\Delta E(I \to I-2)}{I_{x}(I) - I_{x}(I-2)} \approx \frac{1}{2} \Delta E(I \to I-2)$$

Rotational alignment: g-factor

Rotational alignment: g-factor

Rotational alignment: B(E2)-values

GSI

Rotational alignment: Coriolis coupling

¹⁶¹Dy: 5/2[642] ($i_{13/2}$) ¹⁶³Dy: 5/2[523] ($f_{7/2}$)

Nilsson diagram

