Building a level scheme: γ-decay

* Gamma-ray emission is usually the dominant decay mode

Measurements of γ-rays let us deduce:
Energy, Spin (angular distr. / correl.), Parity (polarization), magnetic moment, lifetime (recoil distance, Doppler shift), ...
of the involved nuclear levels.
${ }^{137}$ Cs detected in red: NaI scintillator
blue: HPGe (high purity Ge semiconductor)

$$
{ }_{Z}^{A} X_{N}^{*} \rightarrow{ }_{Z}^{A} X_{N}^{(*)}
$$

γ-decay in a Nutshell

* The photon emission of the nucleus essentially results from a re-ordering of nucleons within the shells.
* This re-ordering often follows α or β decay, and moves the system into a more energetically favorable state.

Seurce: Krane, Fig. 5.11
γ-spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity and $\Delta \mathrm{E}$ are all measurable.

Transition rates between initial Ψ_{N}^{*} and final Ψ_{N}^{\prime} nuclear states, resulting from electromagnetic decay producing a photon with energy E_{γ} can be described by Fermi's Golden rule:

$$
\left.\lambda=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{N}^{\prime} \psi_{\gamma}\right| \mathcal{M}_{e m}\right| \Psi_{N}^{*}\right\rangle\left.\right|^{2} \frac{d n_{\gamma}}{d E_{\gamma}}
$$

where $\mathcal{M}_{e m}$ is the electromagnetic transition operator and $d n_{\gamma} / d E_{\gamma}$ is the density of final states. The photon wave function ψ_{γ} and $\mathcal{M}_{e m}$ are well known, therefore measurements of λ provide detailed knowledge of nuclear structure.

A γ-decay lifetime is typically 10^{-12} [s] and sometimes even as short as 10^{-19} [s]. However, this time span is an eternity in the life of an excited nucleon. It takes about $4 \cdot 10^{-22}$ [s] for a nucleon to cross the nucleus.

Building a level scheme Christopher J. Chiara

- Level and γ properties

- Measured E_{γ} 's \rightarrow level energies
- Efficiency-corrected γ-peak areas \rightarrow intensities, branching ratios, level populations
- γ ADs/ACs, γ polarizations, internal conversion \rightarrow multipolarity \rightarrow level spin, parity

Intensity of EM field (emitted photon) given by Poynting vector, which depends on spherical harmonics $Y_{\mathrm{lm}}(\theta, \phi)$, where θ is relative to quantization axis

Building a level scheme

- Angular distributions

- Quantization axis = spin direction
- May be known event by event

Reaction plane defines spin vector

Building a level scheme

- Angular distributions

- Quantization axis = spin direction
- May be known event by event

Reaction plane defines spin vector

Detect outgoing particle trajectory to determine reaction plane, measure angle ϕ relative to that

(ϕ is the difference between lab angles ϕ_{γ} and ϕ_{p})

Building a level scheme

- Angular distributions

- Quantization axis = spin direction
- May be known event by event

Reaction plane defines spin vector

Detect outgoing particle trajectory to determine reaction plane, measure angle ϕ relative to that
 -

Stone et al., PRL94, 192501 (2005)

Measure intensity as a function of angle
(ϕ is the difference between lab angles ϕ_{γ} and ϕ_{p})

Building a level scheme

- Angular distributions

- Quantization axis = spin direction
- May be known event by event
- ...or it may not! What to do then?

$$
W(\theta)=\sum_{k=0}^{L} A_{2 k} P_{2 k}(\cos \theta)
$$

Reaction plane still defines spin vector, even if not determined experimentally

Ensemble of spins perpendicular to beam direction, symmetrically distributed $\boldsymbol{\rightarrow}$ use beam axis for quantization

Building a level scheme

- Angular distributions
- Quantization axis = spin direction
- May be known event by event
- ...or it may not! What to do then?

$$
W(\theta)=\sum_{k=0}^{L} A_{2 k} P_{2 k}(\cos \theta)
$$

Pure dipole only has P_{2} term, quadrupole adds P_{4}, octupole has P_{6}, etc.
With M1/E2 mixing, $A_{4} \neq 0$; mixing ratio δ^{*} can be deduced, providing insight into underlying structure

Strictly speaking, AD in singles; "gated AD": $\gamma \gamma$ coincidence with no angle condition on gating γ (clean-up only) \rightarrow if 4π coverage, same AD as in singles

Electric and magnetic dipole fields have opposite parity:
Magnetic dipoles have even parity and electric dipole fields have odd parity.

$$
\Rightarrow \pi(M \ell)=(-1)^{\ell+1} \text { and } \pi(E \ell)=(-1)^{\ell}
$$

It is possible to describe the angular distribution of the radiation field as a function of the multipole order using Legendre polynomials.

- $\quad \ell$: The index of radiation
2^{ℓ} : The multipole order of the radiation
- $\ell=1 \rightarrow$ Dipole
$\ell=2 \rightarrow$ Quadrupole
$\ell=3 \rightarrow$ Octupole
- The associated Legendre polynomials $P_{2 \ell}(\cos (\theta))$ are:

For $\ell=1: \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right)$
For $\ell=2: \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right)$

* The photon is a spin-1 boson
* Like α-decay and β-decay the emitted γ-ray can carry away units of angular momentum ℓ, which has given us different multipolarities for transitions.
* For orbital angular momentum, we can have values $\ell=0,1,2,3, \cdots$ that correspond to our multipolarity.
* Therefore, our selection rule is:

$$
\left|J_{i}-J_{f}\right| \leq \ell \leq\left|J_{i}+J_{f}\right|
$$

$$
\begin{aligned}
& E_{\gamma}=E_{i}-E_{f} \\
& \left|I_{i}-I_{f}\right| \leq \ell \leq I_{i}+I_{f} \\
& \Delta \pi(E \ell)=(-1)^{\ell} \\
& \Delta \pi(M \ell)=(-1)^{\ell+1}
\end{aligned}
$$

$|2-0| \leq \ell \leq 2+0$

Here $\Delta I=2$ and $\ell=2$
this is a stretched transition

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta I=1$ but $\ell=1,2,3,4,5$
and the transition can be a mix of 5 multipolarities

Electromagnetic transitions:

$$
\begin{aligned}
& \Delta \pi(\text { electric })=(-1)^{\ell} \\
& \Delta \pi(\text { magnetic })=(-1)^{\ell+1}
\end{aligned}
$$

$\boldsymbol{\pi}$	yes	E 1	M 2	E 3	M 4
	no	M 1	E 2	M 3	E 4

$$
|2-0| \leq \ell \leq 2+0
$$

$\ell=2$ and no change in parity

$\Delta \pi$					
	no	M1	E2	M3	E4

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta I=1$ but $\ell=1,2,3,4,5$

$\Delta \pi$	yes	E 1	M 2	E 3	M 4

mixed E1,M2,E3,M4,E5

The basics of the situation

$$
|3-2| \leq \ell \leq 3+2
$$

Here $\Delta I=1$ but $\ell=1,2,3,4,5$

mixed M1,E2,M3,E4,M5

$$
\begin{aligned}
& 3^{+} \rightarrow 2^{+}: \text {mixed M1,E2,M3,E4,M5 } \\
& 3^{+} \rightarrow 2^{-}: \text {mixed E1,M2,E3,M4,E5 }
\end{aligned}
$$

In general only the lowest 2 multipoles compete and (for reasons we will see later)
$\ell+1$ multipole generally only competes if it is electric:

```
3+}->\mp@subsup{2}{}{+}:\mathrm{ mixed M1/E2
3+}->\mp@subsup{2}{}{-}\mathrm{ : almost pure E1 (very little M2 admixture)
```

\mathbf{L}	multipolarity	$\boldsymbol{\pi}(\mathbf{E} \boldsymbol{\ell}) / \boldsymbol{\pi}(\mathbf{M} \boldsymbol{\ell})$	angular distribution
1	dipole	$-1 /+1$	
2	quadrupole	$+1 /-1$	
3	octupole	$-1 /+1$	
4	hexadecapole	$+1 /-1$	
\vdots			

parity: electric multipoles $\pi(\mathrm{E} \ell)=(-1)^{\ell}$, magnetic multipoles $\pi(\mathrm{M} \ell)=(-1)^{\ell+1}$

The power radiated is proportional to:

$$
P(\sigma \ell) \propto \frac{2(\ell+1) \cdot c}{\varepsilon_{0} \cdot \ell \cdot[(2 \ell+1)!!]^{2}}\left(\frac{\omega}{c}\right)^{2 \ell+2}|\mathcal{M}(\sigma \ell)|^{2}
$$

where σ means either E or M and $\mathcal{M}(\sigma \ell)$ is the E or M multipole moment of the appropriate kind.

$$
\begin{gathered}
T\left(E 1 ; I_{i} \rightarrow I_{f}\right)=1.59010^{17} E_{\gamma}^{3} B\left(E 1 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 2 ; I_{i} \rightarrow I_{f}\right)=1.22510^{13} E_{\gamma}^{5} B\left(E 2 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 3 ; I_{i} \rightarrow I_{f}\right)=5.70910^{8} E_{\gamma}^{7} B\left(E 3 ; I_{i} \rightarrow I_{f}\right) \\
T\left(E 4 ; I_{i} \rightarrow I_{f}\right)=1.69710^{4} E_{\gamma}^{9} B\left(E 4 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 1 ; I_{i} \rightarrow I_{f}\right)=1.75810^{13} E_{\gamma}^{3} B\left(M 1 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 2 ; I_{i} \rightarrow I_{f}\right)=1.35510^{7} E_{\gamma}^{5} B\left(M 2 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 3 ; I_{i} \rightarrow I_{f}\right)=6.31310^{0} E_{\gamma}^{7} B\left(M 3 ; I_{i} \rightarrow I_{f}\right) \\
T\left(M 4 ; I_{i} \rightarrow I_{f}\right)=1.87710^{-6} E_{\gamma}^{9} B\left(M 4 ; I_{i} \rightarrow I_{f}\right)
\end{gathered}
$$

where $E_{\gamma}=E_{i}-E_{f}$ is the energy of the emitted γ quantum in $\operatorname{MeV}\left(E_{i}, E_{f}\right.$ are the nuclear level energies, respectively), and the reduced transition probabilities $\mathrm{B}(\mathrm{E} \ell)$ in units of $\mathrm{e}^{2}(\mathrm{barn})^{\ell}$ and $\mathrm{B}(\mathrm{M} \ell)$ in units of $\mu_{N}^{2}=\left(e \hbar / 2 m_{N} c\right)^{2}(f m)^{2 \ell-2}$
$B\left(E \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{(1.2)^{2 \lambda}}{4 \pi}\left(\frac{3}{\lambda+3}\right)^{2} A^{2 \lambda / 3} e^{2}(f m)^{2 \lambda}$
$B\left(M \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{10}{\pi}(1.2)^{2 \lambda-2}\left(\frac{3}{\lambda+3}\right)^{2} A^{(2 \lambda-2) / 3} \mu_{N}^{2}(f m)^{2 \lambda-2}$

For the first few values of λ, the Weisskopf estimates are

$$
\begin{gathered}
B\left(E 1 ; I_{i} \rightarrow I_{g s}\right)=6.446 \quad 10^{-4} A^{2 / 3} e^{2}(\text { barn }) \\
B\left(E 2 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-6} A^{4 / 3} e^{2}(\text { barn })^{2} \\
B\left(E 3 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-8} A^{2} e^{2}(\text { barn })^{3} \\
B\left(E 4 ; I_{i} \rightarrow I_{g s}\right)=6.28510^{-10} A^{8 / 3} e^{2}(\text { barn })^{4} \\
B\left(M 1 ; I_{i} \rightarrow I_{g s}\right)=1.790 \quad\left(\frac{e \hbar}{2 M c}\right)^{2}
\end{gathered}
$$

Measuring g-factors

Stuchbery et al., PRC88, 051304 (2013)

Recoil-in-vacuum (RIV) technique

- Nucleus produced in reaction in oriented state
- Recoil exits target into vacuum \rightarrow spin is deoriented by hyperfine interactions
- Deorientation dependent on g-factor

- Recoil In Vacuum in ${ }^{134} \mathrm{Te}$
- Coulex of ${ }^{134} \mathrm{Te}$ RIB (and also ${ }^{130} \mathrm{Te}$ SIB)
- Simultaneously measure $B(E 2)$ and g-factor for 2^{+}
- Observe attenuated ACs \rightarrow relate to $G_{\mathrm{k}} \rightarrow g$-factor

Stuchbery et al., PRC88, 051304 (2013)

Measuring g-factors

During the collision, the projectile can be firstly excited reaching a certain excited state (I_{f}).

Before a γ-decay, the scattered projectile and the target recoil nucleus exit the target into the vacuum highly excited and ionized.

* $\mathrm{g}\left(2^{+}\right)=0 \rightarrow$ unperturbed $\mathrm{p}-\gamma$ angular correlation

$$
\begin{aligned}
G_{k} & =[1+k \cdot(k+1) \cdot \lambda \cdot \tau(I)]^{-1} \\
\lambda & =1 / 3 \cdot \tau_{c} \cdot \omega^{2} \\
\omega & =g \cdot \frac{H \cdot \mu_{N}}{\hbar}
\end{aligned}
$$

A. Abragam \& R.V. Pound, Phys. Rev. 92 (1953) $943 \quad G_{4}=3 \cdot G_{2} /\left(10-7 \cdot G_{2}\right)$

Building a level scheme

- Angular distributions

- Quantization axis = spin direction
- May be known event by event
- ...or it may not! What to do then?
- Spins not aligned indefinitely \rightarrow AD attenuated through hyperfine interactions

> If there is no spin orientation, all substates contribute equally and $W(\theta)=$ constant

What to do if alignment is lost (or was never there), e.g. for γ 's below isomers?

Building a level scheme

- Angular correlations
- Coincidence technique
- Detect first $\gamma \rightarrow$ defines quantization axis
- Detect second $\gamma \rightarrow$ determine relative angle

$$
W(\psi)=\sum_{k=0}^{L} A_{2 k} P_{2 k}(\cos \psi)
$$

Same form as for AD, different coefficients.
L limit determined by lowest multipole.

Building a level scheme

Imagine the situation of an M1 decay between two states, the initial one has J^{π} value of 1^{+}and the final one a J^{π} of 0^{+}

The initial $\mathrm{J}^{\pi}=1^{+}$state has 3 degenerate magnetic substates which differ by the magnetic quantum numbers m of ± 1 and 0 .

The final $\mathrm{J}^{\pi}=0^{+}$state has a single magnetic substate with $\mathrm{m}=0$.

When the substates of $\mathrm{J}^{\pi}=1^{+}$state decay, the γ-rays emitted have different angular patterns.

For the M 1 case the angular distributions $\mathrm{W}(\theta)$ are:

$$
\begin{aligned}
& W_{M 1, \Delta m=1}(\theta)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right) \\
& W_{M 1, \Delta m=0}(\theta)=\frac{3}{8 \pi} \sin ^{2} \theta \\
& W_{M 1, \Delta m=-1}(\theta)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

So the total distribution is $W_{M 1}=\frac{1}{3} W_{M 1, \Delta m=1}+\frac{1}{3} W_{M 1, \Delta m=0}+\frac{1}{3} W_{M 1, \Delta m=-1}$

$$
=\frac{1}{8 \pi}\left(1+\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{1}{4 \pi}
$$

no angular dependence

Let's imagine we have two γ-rays which follow immediately after each other in the level scheme.

If we measure γ_{1} or γ_{2} in singles, then the distribution will be isotropic (same intensity at all angles) ... there is no preferred direction of emission

Now imagine that we measure γ_{1} and γ_{2} in coincidence. We say that measuring γ_{1} causes the intermediate state to be aligned. We define the zdirection as the direction of γ_{1}

The angular distribution of the emission of γ_{2} then depends on the spin/parities of the states involved and on the multipolarity of the transition.

Hence, for γ_{2} we only see the $m= \pm 1$ to $m=0$ part of the distribution i.e. we see that the intensity measured as a function of angle (relative to γ_{1}) follows a $1+$ $\cos ^{2} \theta$ distribution.

$\mathrm{I}_{1}\left(\ell_{1}\right)$	$\mathrm{I}_{2}\left(\ell_{2}\right)$	I_{3}	a_{2}	a_{4}
$0(1)$	$1(1)$	0	1	0
$1(1)$	$1(1)$	0	$-1 / 3$	0
$1(2)$	$1(1)$	0	$-1 / 3$	0
$2(1)$	$1(1)$	0	$1 / 13$	0
$3(2)$	$1(1)$	0	$-3 / 29$	0
$0(2)$	$2(2)$	0	-3	4
$1(1)$	$2(2)$	0	$-1 / 3$	0
$2(1)$	$2(2)$	0	$3 / 7$	0
$2(2)$	$2(2)$	0	$-15 / 13$	$16 / 13$
$3(2)$	$2(2)$	0	$-3 / 29$	0
$4(2)$	$2(2)$	0	$1 / 8$	$1 / 24$

In general, the γ-ray intensity varies as:

$$
W(\theta)=\sum_{k_{\text {even }}} A_{k}\left(\gamma_{1}\right) A_{k}\left(\gamma_{2}\right) Q_{k}\left(\gamma_{1}\right) Q_{k}\left(\gamma_{2}\right) P_{k}(\cos \theta)
$$

where
θ is the relative angle between the two γ-rays
Q_{k} accounts for the fact that we do not have point detectors
A_{k} depends on the details of the transition and the spins of the level

$$
\begin{aligned}
& P_{0}=1 \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right) \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right) \\
& W(\theta)=1+a_{2} \cos ^{2} \theta+a_{4} \cos ^{4} \theta
\end{aligned}
$$

In general, the γ-ray intensity varies as:

$$
W(\theta)=\sum_{k_{\text {even }}} A_{k}\left(\gamma_{1}\right) A_{k}\left(\gamma_{2}\right) Q_{k}\left(\gamma_{1}\right) Q_{k}\left(\gamma_{2}\right) P_{k}(\cos \theta)
$$

where
θ is the relative angle between the two γ-rays
Q_{k} accounts for the fact that we do not have point detectors
A_{k} depends on the details of the transition and the spins of the level

$$
P_{0}=1 \quad P_{2}=\frac{1}{2}\left(3 \cdot \cos ^{2}(\theta)-1\right) \quad P_{4}=\frac{1}{8}\left(35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right)
$$

$$
\begin{aligned}
& A_{k}\left(\gamma_{1}\right)=\frac{F_{k}\left(J_{2} J_{1} \ell, \ell\right)-2 \cdot \delta \cdot F_{k}\left(J_{2} J_{1} \ell, \ell+1\right)+\delta^{2} \cdot F_{k}\left(J_{2} J_{1} \ell+1, \ell+1\right)}{1+\delta^{2}} \\
& A_{k}\left(\gamma_{2}\right)=\frac{F_{k}\left(J_{2} J_{3} L, L\right)-2 \cdot \delta \cdot F_{k}\left(J_{2} J_{3} L, L+1\right)+\delta^{2} \cdot F_{k}\left(J_{2} J_{3} L+1, L+1\right)}{1+\delta^{2}}
\end{aligned}
$$

Ferentz-Rosenzweig coefficients

$$
F_{k}\left(L L^{\prime} I_{1} I_{2}\right)=(-1)^{I_{1}+I_{2}+1} \sqrt{2 k+1} \sqrt{2 L+1} \sqrt{2 L^{\prime}+1} \sqrt{2 I_{2}+1}\left(\begin{array}{ccc}
L & L^{\prime} & k \\
1 & -1 & 0
\end{array}\right)\left\{\begin{array}{ccc}
L & L^{\prime} & k \\
I_{1} & I_{1} & I_{2}
\end{array}\right\}
$$

${ }_{78}^{195} P t(n, \gamma){ }_{78}^{196} P t$

Many arrays are designed symmetrically, so the range of possible angles is reduced.
Therefore one measures a Directional Correlation from Oriented Nuclei (DCO ratio)
In the simplest case, if you have an array with detectors at 35° and 90°.
Gate on 90° detector, measure coincident intensities in

- other 90° detectors
- 35^{0} detectors

Take the ratio and compare with calculations ... can usually separate quadrupoles from dipoles but cannot measure mixing ratios

K.R.Pohl et al., Phys Rev C53 (1996) 2682

In heavy-ion fusion-evaporation reactions, the compound nuclei have their spin aligned in a plane perpendicular to the beam axis:

$$
\vec{l}=\vec{r} \times \vec{p}
$$

Depending on the number and type of particles 'boiled off' before a γ-ray is emitted, transitions are emitted from oriented nuclei and therefore
 their intensity shows an angular dependence.

$$
W(\theta)=A_{0}\left(1+\frac{A_{2}}{A_{0}} \cdot B_{2} \cdot Q_{2} \cdot P_{2}(\cos \theta)+\frac{A_{4}}{A_{0}} \cdot B_{4} \cdot Q_{4} \cdot P_{4}(\cos \theta)\right)
$$

where A_{k}, Q_{k} and P_{k} are as before and B_{k} contains information about the alignment of the state

$$
B_{k}\left(I_{i}\right)=\sqrt{2 I_{i}+1} \sum_{m=-I}^{+I}(-1)^{I_{i}-m}\left\langle I_{i} m I_{i}-m \mid k 0\right\rangle P(m) \quad P(m)=\frac{\exp \left(-\frac{m^{2}}{2 \sigma^{2}}\right)}{\sum_{m^{\prime}=-I}^{+I} \exp \left(-\frac{m^{\prime 2}}{2 \sigma^{2}}\right)}
$$

Measure: the γ-ray yield as a function of θ

Building a level scheme

- ADs/ACs \rightarrow multipole order L, but do not directly distinguish \mathbf{E} vs \mathbf{M}
- Pure $\Delta \mathrm{I}=1 \mathrm{E} 1$ looks the same as pure $\Delta \mathrm{I}=1 \mathrm{M} 1$, e.g.
- Nonzero mixing ratio may change that, as M1/E2 far more likely than E1/M2
- For more direct determination of E or M : measure polarization

Measure Compton scattering within and perpendicular to reaction plane

$$
P \propto \frac{a N_{\perp}-N_{\|}}{a N_{\perp}+N_{\|}}
$$

(a corrects for different intrinsic count rates)

Linear polarization

A segmented detector can be used to measure the linear polarization which can be used to distinguish between magnetic (M) and electric (E) character of radiation of the same multipolarity.

The Compton scattering cross section is larger in the direction perpendicular to the electrical field vector of the radiation.
Define experimental asymmetry as: $A=\frac{N_{90}-N_{0}}{N_{90}+N_{0}}$
where N_{90} and N_{0} are the intensities of scattered photons perpendicular and parallel to the reaction plane. The experimental linear polarization $\mathrm{P}=\mathrm{A} / \mathrm{Q}$ where Q is the polarization sensitivity of the detector

$$
\mathrm{Q} \sim 13 \% \text { at } 1 \mathrm{MeV}
$$

Linear polarization

Klein-Nishina formula:

$$
\frac{d \sigma_{c}}{d \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{E_{\gamma^{\prime}}}{E_{\gamma}}\right)^{2} \cdot\left\{\frac{E_{\gamma}}{E_{\gamma^{\prime}}}+\frac{E_{\gamma^{\prime}}}{E_{\gamma}}-2 \sin ^{2} \theta \cdot \cos ^{2} \varphi\right\}
$$

Maximum polarization at $\theta=90^{\circ}$

Proof of Principle

N. Pietralla, Nucl Instr Meth A483, 556 (2002)

Plot P against the angular distribution information to uniquely define the multipolarity.

Data from Eurogam

Building a level scheme

- ADs/ACs \rightarrow multipole order L, but do not directly distinguish \mathbf{E} vs \mathbf{M}
- Pure $\Delta \mathrm{I}=1$ E1, e.g., looks the same as pure $\Delta \mathrm{I}=1 \mathrm{M} 1$
- Nonzero mixing ratio may change that, as M1/E2 far more likely than E1/M2
- For more direct determination of E or M: measure polarization (e.g. Clover detectors)
- ...or internal-conversion electrons

Nuclear level decay via internal conversion (IC)
$>$ first observed over 100 y ago
[van Baeyer and Hahn, Physik. Z. 11, 488 (1910)] *
$>$ ubiquitous process
$>$ usable as analysis tool
(cf. BrIcc, http://bricc.anu.edu.au/)

Instead of γ emission, energy transferred to atomic electron, which is ejected

Energetics of CE-decay ($\mathbf{i}=\mathbf{K}, \mathrm{L}, \mathrm{M}, \ldots$.)

$$
\mathbf{E}_{\mathrm{i}}=\mathbf{E}_{\mathrm{f}}+\mathbf{E}_{\mathrm{ce}, \mathrm{i}}+\mathbf{E}_{\mathbf{B E}, \mathrm{i}}
$$

γ - and CE-decays are independent; transition probability ($\lambda \sim$ Intensity)

$$
\lambda_{\mathrm{T}}=\lambda_{\gamma}+\lambda_{\mathrm{CE}}=\lambda_{\gamma}+\lambda_{\mathrm{K}}+\lambda_{\mathrm{L}}+\lambda_{\mathrm{M}} \ldots \ldots
$$

Conversion coefficient

$$
\alpha_{i}=\frac{\lambda_{C E, i}}{\lambda_{\gamma}}
$$

* For an electromagnetic transition internal conversion can occur instead of emission of gamma radiation. In this case the transition energy $\mathrm{Q}=\mathrm{E}_{\gamma}$ will be transferred to an electron of the atomic shell.
$\mathrm{T}_{\mathrm{e}}=\mathrm{E}_{\gamma}-\mathrm{B}_{\mathrm{e}} \quad \mathrm{T}_{\mathrm{e}}$: kinetic energy of the electron
B_{e} : binding energy of the electron
internal conversion is important for:
- heavy nuclei $\sim Z^{3}$
- high multipolarities E ℓ or M ℓ
- small transition energies

$$
\alpha_{k}(E l) \propto Z^{3}\left(\frac{L}{L+1}\right)\left(\frac{2 m_{e} c^{2}}{E}\right)^{L+5 / 2}
$$

ELECTRON
TRAJECTORY

Doppler shift correction for projectile:

$$
T_{e}^{*}=\gamma \cdot T_{e} \cdot\left\{1-\beta_{1} \cdot \sqrt{1+2 m_{e} c^{2} / T_{e}} \cdot \cos \theta_{e 1}\right\}+m_{e} c^{2} \cdot(\gamma-1)
$$

$$
\cos \theta_{e 1}=\cos \vartheta_{1} \cos \vartheta_{e}+\sin \vartheta_{1} \sin \vartheta_{e} \cos \left(\varphi_{e}-\varphi_{1}\right)
$$

resolution of the spectrometer		$\left(\frac{\Delta p}{p}\right)_{e} / \%$
including Doppler correction		0.4
as calculated for a point source	(i)	0.004
scattering in the target	(ii)	0.11
beam optics	(iii)	0.09
evaporation of neutrons	(iv)	0.31
energy loss in the target	(v)	0.006
energy straggling of the projectiles		0.53
quadratic sum		
experimental resolution		

Mini Orange setup for conversion electron spectroscopy

Principle:
Si(Li) (3x)

Coulomb excitation experiment

Surface oscillations in deformed nuclei

x-z plane

x-y plane

$12+\quad 1078$
$10^{+} \quad 776$

${ }^{238} U$

Building a level scheme

- E0 decays

- Most transitions have γ vs e- competition, but one case that "never" has a γ : $\mathbf{0}^{+} \boldsymbol{\rightarrow} \mathbf{0}^{+}$
- Transition would be E0 (monopole moment = charge), which cannot radiate to points external to nucleus

$$
\begin{aligned}
\frac{Y_{e}(E 0)}{Y_{\gamma}(E 2)}=\frac{\Omega_{K}\left[s^{-1}\right]}{2.56 \cdot 10^{9} \cdot A^{4 / 3} \cdot E_{\gamma}{ }^{5}[\mathrm{MeV}]} \cdot & \underbrace{\frac{B\left(E 0 ; I \rightarrow I^{\prime}\right)}{B\left(E 2 ; I \rightarrow I^{\prime}\right)}} \\
& =14 \beta^{2} \text { for } 2_{\beta} \rightarrow 2
\end{aligned}
$$

Ω_{K} : conversion probability electronic factor

Building a level scheme

- E0 decays

- Most transitions have γ vs e ${ }^{-}$competition, but one case that "never" has a $\gamma: \mathbf{0}^{+} \rightarrow \mathbf{0}^{+}$
- Transition would be E0 (monopole moment = charge), which cannot radiate to points external to nucleus

Why "never" and not never?
If $\mathrm{E}>2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}=1.022 \mathrm{MeV}$, internal pair $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$production is possible.
e^{+}subsequently annihilates with another e^{-}, yielding $511-\mathrm{keV} \gamma^{\prime}$ s.

Building a level scheme

- Level and γ properties
- Measured E_{γ} 's \rightarrow level energies
- Efficiency-corrected γ peak areas \rightarrow intensities, branching ratios, level populations
- γ ADs/ACs, γ polarizations, internal conversion \rightarrow multipolarity \rightarrow level spin, parity
- Relative γ times \rightarrow level half-lives, B(XL)'s

Reduced transition rates $B(X L) \propto E_{\gamma}^{-(2 L+1)} T_{1 / 2, \gamma}^{-1}$
can be a sensitive probe of matrix elements connecting initial and final states:

$$
B\left(X L ; I_{i} \rightarrow I_{f}\right)=\frac{1}{2 I_{i}+1}\left\langle\psi_{f}\|X L\| \psi_{i}\right\rangle^{2}
$$

Measuring half-lives

Excited-state half-lives range from $\sim 10^{-23} \mathrm{~s}$ ($>10-\mathrm{MeV}$ resonances) to $>4.5 \times 10^{16} \mathrm{y}$ (${ }^{180 \mathrm{~m}} \mathrm{Ta}$). That's over 47 orders of magnitude!

Most excited states have sub-ns half-lives; why are some exceptionally long?

- Low transition energy
- Large spin difference
- Large difference in underlying configurations
- K-forbiddenness (change in spin projection on symmetry axis $\Delta K>L$)

No single approach to measuring half-lives will apply to all cases.

Measuring half-lives

- Observe exponential decay for half-lives of \sim tens of ps or longer
- Measure γ-ray time relative to a fast START signal
- START with preceding β decay in e.g. fast plastic
- ...or START with RF (clock tick marking reaction)
- ...or START with preceding γ in e.g. Ge ($\mathrm{T}_{1 / 2}>\mathrm{ns}$) or LaBr_{3} (sub-ns)
- Get half-life from slope of exponential

Zhu et al., NIMA652, 231 (2011)

Measuring half-lives

- Observe exponential decay for half-lives of \sim tens of ps or longer
- Measure γ-ray time relative to a fast START signal
- START with preceding β decay in e.g. fast plastic
- ...or START with RF (clock tick marking reaction)
- ...or START with preceding γ in e.g. Ge ($\mathrm{T}_{1 / 2}>\mathrm{ns}$) or LaBr_{3} (sub-ns)
- Get half-life from slope of exponential...or from centroid shift

Kondev et al., PRC85, 027304 (2012)

Zhu et al., NIMA652, 231 (2011)

Measuring half-lives

- For ~ps half-lives, instrumentation not fast enough
- Exploit physics of in-beam measurement: Doppler shifts

Brief Doppler diversion...

Doppler effect

Doppler shift:

$E=E_{0} \frac{\sqrt{1-(v / c)^{2}}}{1-(v / c) \cos \theta}$

Doppler broadening:

$\Delta E \propto E_{0}(v / c) \sin \theta \Delta \theta$

Ions lose energy while traversing a medium $\rightarrow \mathrm{v} / \mathrm{c}$ decreases with time.
By modelling the energy loss, time-dependent Doppler shift determined $\boldsymbol{\rightarrow}$
Doppler-shift attenuation and (differential) plunger techniques

Measuring half-lives

- For ~ps half-lives, instrumentation not fast enough
- Exploit physics of in-beam measurement: Doppler shifts
- Recoil-distance method (plunger)
- Produce nucleus of interest with initial velocity v_{0} via Coulex or KO reactions
- Observe Doppler-shifted γ 's emitted between target and
$\mathrm{c}=300 \mu \mathrm{~m} / \mathrm{ps} \quad \mathrm{v}$ ~ 0.3c
10 ps ~ 1mm

Recoil distance method

$$
\begin{aligned}
& I_{\text {degraded }}=I \cdot e^{-d / v \tau} \\
& I_{\text {shifted }}=\left(1-e^{-d / v \tau}\right) \\
& \frac{I_{\text {degraded }}}{I_{\text {degraded }}+I_{\text {shifted }}}=e^{-d / v \tau}
\end{aligned}
$$

Measuring half-lives

- Double-degrader plunger

Doppler Shift Attenuation Method

Measuring half-lives

- For ~ps half-lives, instrumentation not fast enough
- Exploit physics of in-beam measurement: Doppler shifts
- Recoil-distance method (plunger)
- Doppler-broadened line shapes
- If ion slows substantially in foil, variation in Doppler shift \rightarrow line shape
- Sensitive to sub-ps $\mathrm{T}_{1 / 2}$'s

Chiara et al., PRC61, 034318 (2000)

With a source at rest, the intrinsic resolution of the detector can be reached; efficiency decreases with the increasing detector-source distance.

With a moving source also the effective energy resolution depends on the detector-source distance (Doppler effect)

Small d Large d Large Ω
Small $\Omega$$\Rightarrow \begin{aligned} & \text { High } \varepsilon \\ & \text { Low } \varepsilon\end{aligned}$

Energy resolution

The major factors affecting the final energy resolution (FWHM) at a particular energy are as follows:

$$
\Delta E_{\gamma}^{f i n a l}=\left(\Delta E_{\text {Int }}^{2}+\Delta \theta_{\text {det }}^{2}+\Delta \theta_{N}^{2}+\Delta v^{2}\right)^{1 / 2}
$$

$\Delta E_{\text {Int }}$ - The intrinsic resolution of the detector system. It includes contributions from the detector itself and the electronic components used to process the signal.
$\Delta \theta_{\text {det }}$ - The Doppler broadening arising from the opening angle of

$\Delta \theta_{N}$ - The Doppler broadening arising from the angular spread of the recoils in the target
Δv - The Doppler broadening arising from the velocity (energy) variation of the excited nucleus

Lorentz transformation:

\square Consider the space-time point

- in a given frame $\mathrm{S}:(t, x, y, z)$
- and in a (moving) frame $S^{\prime}: \quad\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$

1) S' moves with a constant velocity v along z-axis

Space-time Lorentz transformation $\mathrm{S} \leftrightarrow \rightarrow \mathrm{S}^{\text {' }}$:

$$
\begin{array}{ll}
\underline{S \Rightarrow S^{\prime}} & \underline{S^{\prime} \Rightarrow S} \\
\hline x^{\prime}=x & x=x^{\prime} \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=\gamma(z-v t) & z=\gamma\left(z^{\prime}+v t\right) \\
t^{\prime}=\gamma(t-v z) & t=\gamma\left(t^{\prime}+v z\right)
\end{array}
$$

Consider the 4-momentum:

- in a given frame $\mathrm{S}: \quad \boldsymbol{p} \equiv(E, p)=\left(E, p_{x}, p_{y}, p_{z}\right)$
- in the (moving) frame $S^{\text {© }}$

$$
p^{\prime} \equiv\left(E^{\prime}, \vec{p}^{\prime}\right)=\left(E^{\prime}, p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)
$$

Note: units $\mathbf{c = 1}$

$$
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} z\right)
$$

$$
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} z\right)
$$

Lorentz transformation for 4-momentum $S \leftrightarrow S^{\text {‘ }}$:

$$
v_{z}=|\vec{v}|=v
$$

$$
\begin{aligned}
p_{x}^{\prime} & =p_{x}, \quad p_{y}^{\prime}=p_{y} \\
p_{z}^{\prime} & =\gamma\left(p_{z}-v E\right) \\
E^{\prime} & =\gamma\left(E-v p_{z}\right)
\end{aligned}
$$

rest system

laboratory system
total energy:

$$
E^{*}=\gamma \cdot E-\gamma \cdot v \cdot P \cdot \cos \theta
$$

with

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(P c)^{2}}
$$

$\mathrm{E}^{*}, \mathrm{P}^{*}$ total energy and momentum in the rest system
E, P total energy and momentum in the laboratory system
$\mathrm{E}=\mathrm{Pc}$
$E^{*}=\gamma \cdot E-\gamma \cdot \beta \cdot E \cdot \cos \theta$

$$
E^{*}=\gamma \cdot E(1-\beta \cdot \cos \theta)
$$

Hendrik Lorentz
$\frac{E_{\gamma 0}}{E_{\gamma}}=\frac{1-\beta \cdot \cos \vartheta_{\gamma}^{l a b}}{\sqrt{1-\beta^{2}}}$
for $\vartheta_{p} \cong 0^{0}$

$\frac{d \Omega_{\text {rest }}}{d \Omega_{\text {lab }}}=\left(\frac{E_{\gamma}}{E_{\gamma 0}}\right)^{2}$

Doppler broadening and position resolution

$$
E_{\gamma 0}=E_{\gamma} \frac{1-\beta \cdot \cos \vartheta_{\gamma}}{\sqrt{1-\beta^{2}}} \quad\left(\beta, \vartheta_{p}=0^{0}, \vartheta_{\gamma} \text { and } E_{\gamma} \text { in lab }- \text { frame }\right)
$$

$$
\left(\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}\right)^{2}=\left(\frac{\beta \cdot \sin \vartheta_{\gamma}}{1-\beta \cdot \cos \vartheta_{\gamma}}\right)^{2}\left(\Delta \vartheta_{\gamma}\right)^{2}+\left(\frac{\beta-\cos \vartheta_{\gamma}}{\left(1-\beta^{2}\right) \cdot\left(1-\beta \cdot \cos \vartheta_{\gamma}\right)}\right)^{2}(\Delta \beta)^{2}+\left(\frac{1}{E_{\gamma}}\right)^{2}\left(\Delta E_{\gamma}\right)^{2}
$$

Angular resolution

Doppler broadening (opening angle of detector)

$\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}=\frac{\beta \cdot \sin \vartheta_{\gamma}}{1-\beta \cdot \cos \vartheta_{\gamma}} \cdot \Delta \vartheta_{\gamma}$
for $\vartheta_{p} \cong 0^{0}$
with
$\Delta \vartheta_{\gamma}=0.622 \cdot \arctan \frac{d[\mathrm{~mm}]}{R[\mathrm{~mm}]+30[\mathrm{~mm}]}$

$$
\begin{aligned}
& R=700[\mathrm{~mm}] \\
& d=59[\mathrm{~mm}]
\end{aligned}
$$

Doppler broadening (velocity variation)

$$
\begin{aligned}
& \frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}=\frac{\beta-\cos \vartheta_{\gamma}}{\left(1-\beta^{2}\right) \cdot\left(1-\beta \cdot \cos \vartheta_{\gamma}\right)} \cdot \Delta \beta \\
& \text { for } \vartheta_{p} \cong 0^{0} \\
& \text { with } \Delta \beta=6 \%
\end{aligned}
$$

Experimental arrangement

experimental problem:
Doppler broadening due to finite size of Ge-detector $\frac{\Delta E}{E} \sim 1 \% \quad$ for $\quad \Delta \vartheta_{\gamma}=20^{0} \quad \beta_{1} \cong 10 \%$

For projectile excitation:

$E^{*}=\gamma \cdot E \cdot\left(1-\beta_{1} \cdot \cos \theta_{\gamma 1}\right) \quad$ Doppler shift
with
$\cos \theta_{\gamma 1}=\cos \vartheta_{1} \cos \vartheta_{\gamma}+\sin \vartheta_{1} \sin \vartheta_{\gamma} \cos \left(\varphi_{\gamma}-\varphi_{1}\right)$
$\Delta E \cong E^{*} \cdot \beta_{1} \cdot \sin \theta_{\gamma 1} \cdot \Delta \theta_{\gamma 1} \quad$ Doppler broadening

Contraction of the solid angle element in the laboratory system

$$
\frac{d \Omega}{d \Omega^{*}}=\left\{\frac{E^{*}}{E}\right\}^{2}
$$

with

$$
E^{*}=\gamma \cdot E \cdot(1-\beta \cdot \cos \theta) \quad \text { Doppler formula }
$$

> Doppler broadening
> $\Delta \vartheta_{\mathrm{e}}=20^{0}$
> target - Mini-Orange: 19 cm
> Mini-Orange - Si detector: 6 cm

For projectile excitation:

$$
T_{e}^{*}=\gamma \cdot T_{e} \cdot\left\{1-\beta_{1} \cdot \sqrt{1+2 m_{e} c^{2} / T_{e}} \cdot \cos \theta_{e 1}\right\}+m_{e} c^{2} \cdot(\gamma-1)
$$

with

$$
\cos \theta_{e 1}=\cos \vartheta_{1} \cos \vartheta_{e}+\sin \vartheta_{1} \sin \vartheta_{e} \cos \left(\varphi_{e}-\varphi_{1}\right)
$$

