Outline: α-decay

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. energetics of α -decay
- 2. Geiger Nuttall law
- 3. quantum tunneling
- 4. Gamow factor
- 5. angular momentum in α -decay

Uranium emitting alpha-particles

cloud chamber

a-decay

Why α-decay occurs?

The mass excess = $M(A,Z) - A \cdot M(u)$ (in MeV/c²) of ⁴He and its near neighbors

$\downarrow N, Z \rightarrow$	0	1	2	3	4
0	-	7.289	-	-	-
1	8.071	13.136	14.931	25.320	37.996
2	-	14.950	2.425	11.679	18.374
3	-	25.928	11.386	14.086	15.769
4	-	36.834	17.594	14.908	4.942

Compared to its low-A neighbors in the chart of nuclides, ⁴He is bound very strongly.

Think classically, occasionally 2 protons and 2 neutrons appear together at the edge of a nucleus, with outward pointing momentum, and bang against the Coulomb barrier.

The energetics of α -decay

The α -decay process is determined by the rest mass difference of the initial state and final state.

 $Q = m(A,Z) - m(A - 4, Z - 2) - m({}_{2}^{4}He)$

 $Q = BE(A - 4, Z - 2) + B_{\alpha}(28.3 MeV) - BE(A, Z)$

The Q-value of a reaction or of a decay indicates if it happens spontaneously or if additional energy is needed.

Mass (1u=931.478MeV/c²): 226.0254u \rightarrow 222.0176u + 4.0026u energy gain: 4.87 MeV

Binding energy $[M(A,Z) - Z \cdot M({}^{1}H) - N \cdot M({}^{1}n)]$: -1731.610 MeV \rightarrow -1708.184 MeV – 28.296 MeV energy gain: 4.87 MeV

Mass excess [M(A,Z) - A] : 23.662 MeV \rightarrow 16.367 MeV + 2.425 MeV energy gain: 4.87 MeV

Mass data: https://www-nds.iaea.org/amdc/

The Q-value and the kinetic energy of α -particles

What is the α -energy for the system $^{214}_{84}Po_{130} \rightarrow ^{210}_{82}Pb_{128} + \alpha$

Mass data: https://www-nds.iaea.org/amdc/

 $m_N \cdot v_N = m_\alpha \cdot v_\alpha$

- 0

 $BE(^{214}Po) = 1666.0 \text{ MeV} \\BE(^{210}Pb) = 1645.6 \text{ MeV} \\BE(^{4}He) = 28.3 \text{ MeV}$

$$Q_{\alpha} = 7.83 \text{ MeV}$$

momentum conservation:

$$\rightarrow \quad v_N = \frac{m_\alpha}{m_N} \cdot v_\alpha$$

energy conservation:

$$Q_{\alpha} = E_{kin}^{N} + E_{kin}^{\alpha}$$

$$= \frac{m_{N}}{2} \cdot v_{N}^{2} + E_{kin}^{\alpha}$$

$$= \frac{m_{N}}{2} \cdot \frac{m_{\alpha}^{2}}{m_{N}^{2}} \cdot v_{\alpha}^{2} + E_{kin}^{\alpha}$$

$$= \frac{m_{\alpha}}{m_{N}} \cdot E_{kin}^{\alpha} + E_{kin}^{\alpha}$$

$$= \frac{m_{\alpha} + m_{N}}{m_{N}} \cdot E_{kin}^{\alpha} \longrightarrow E_{kin}^{\alpha} = Q_{\alpha} \cdot \frac{m_{N}}{m_{N} + m_{\alpha}} = 7.83 MeV \cdot \frac{210}{214} = 7.68 MeV$$

For a typical α -emitter, the recoil energy is ~100 -150 keV.

 $E_{kin}(\alpha)$

Energy differences of atomic masses:

 $Q = m(A,Z) - m(A - 4, Z - 2) - m({}_{2}^{4}He)$ $Q = BE(A - 4, Z - 2) + B_{\alpha}(28.3 MeV) - BE(A,Z)$

The Q-value of the decay is the available energy which is distributed as kinetical energy between the two participating particles. Since the mother and daughter nucleus have fixed masses, the α -particles are mono-energetic.

Tracks of α -particles (²¹⁴Po \rightarrow ²¹⁰Pb + α) in a cloud chamber. The constant length of the tracks shows that the α -particles are mono-energetic (E_{α}=7.7 MeV)

a-decay systematics: Geiger-Nuttall law

a-decay schemes / spectra

GSI

Brief introduction of quantum mechanics

REMINDE

Richard Feynman: "I think I can safely say that nobody understands quantum mechanics."

The Copenhagen Interpretation:

When nobody is looking

- System are described by wave functions
- Wave functions obey the Schrödinger equation

When somebody looks

- Wave function collapses to a particular value
- Probability of any outcome is the wave function squared, $p(x) = |\Psi(x)|^2$

Copenhagen interpretation (1927)

A classical cat is in a definite awake/asleep state:

A quantum cat can be in a superposition:

 $(cat) = (\mathbf{M} + \mathbf{M})$

cat and observer are both quantum:

$$(cat)(observer) = ((intermediate + intermediate))((intermediate))$$
$$measurement$$
$$(cat,obs) = ((intermediate), (intermediate), (intermediate))$$

Never interfere with each other. It's as if they have become part of a separate worlds.

Proton and neutrons are bound with up to 7 MeV and can not escape out of the nucleus. The emission of a bound system is more probable because of the additional binding energy $E_{\alpha} = 28.3$ MeV.

The Coulomb barrier of the nucleus prevents the α -particles from escaping. The energy needed is generally in the range of about 20-25 MeV.

$$V_C = \frac{2 \cdot (Z-2) \cdot e^2}{r} = \frac{2 \cdot 82 \cdot 1.44 \text{ MeV } fm}{11.25 \text{ fm}} = 21 \text{ MeV}$$

Classically, the α -particle is reflected on the Coulomb barrier when $E_{\alpha} < V_{C}$, but quantum mechanics allows the penetration through the Coulomb potential via the mechanism of tunneling.

Quantum tunneling and α -decay

Quantum tunneling

Intrinsic α -wave function 'leaks' out

time independent Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x) + V(x)\cdot\Psi(x) = E\cdot\Psi(x)$$

with $\int |\Psi(x)|^2 = 1$

general Ansatz for the solutions in area A, B, C

A,C:
$$\Psi''(x) + k^2 \cdot \Psi(x) = 0; \quad k^2 = 2 \cdot m \cdot E/\hbar^2$$

B:
$$\Psi''(x) + \kappa^2 \cdot \Psi(x) = 0; \quad \kappa^2 = 2 \cdot m \cdot (E - V_0)/\hbar^2$$

A:
$$\Psi(x) = A_1 \cdot e^{i \cdot k \cdot x} + A_2 \cdot e^{-i \cdot k \cdot x}$$

$$C: \qquad \Psi(x) = C_1 \cdot e^{i \cdot k \cdot x} + C_2 \cdot e^{-i \cdot k \cdot x}$$

B:
$$\Psi(x) = B_1 \cdot e^{\kappa \cdot x} + B_2 \cdot e^{-\kappa \cdot x}; \quad \kappa^2 = 2 \cdot m \cdot (V_0 - E)/\hbar$$

Quantum tunneling

The α -wave function from left will either be reflected or transmitted through the potential.

► In region C the wave is only travelling to the right $\rightarrow C_2 = 0$

With 4 equations for the 5 unknowns A_1 , A_2 , B_1 , B_2 and C_1 4 quantities can be determined with respect to e.g. A_1 .

 $R = \frac{|A_2|^2}{|A_1|^2}$

 $T = \frac{|C_1|^2}{|A_1|^2}$

Reflection coefficient:

Transmission coefficient:

$$\mathbf{X} = -\mathbf{a}:$$

$$A_1 \cdot e^{-i \cdot k \cdot a} + A_2 \cdot e^{i \cdot k \cdot a} = B_1 \cdot e^{-\kappa \cdot a} + B_2 \cdot e^{\kappa \cdot a}$$

$$i \cdot k \cdot A_1 \cdot e^{-i \cdot k \cdot a} - i \cdot k \cdot A_2 \cdot e^{i \cdot k \cdot a} = \kappa \cdot B_1 \cdot e^{-\kappa \cdot a} - \kappa \cdot B_2 \cdot e^{\kappa \cdot a}$$

$$C_1 \cdot e^{i \cdot k \cdot a} = B_1 \cdot e^{\kappa \cdot a} + B_2 \cdot e^{-\kappa \cdot a}$$

X= +a:
$$i \cdot k \cdot C_1 \cdot e^{i \cdot k \cdot a} = \kappa \cdot B_1 \cdot e^{\kappa \cdot a} - \kappa \cdot B_2 \cdot e^{-\kappa \cdot a}$$

$$T = \left[1 + \frac{V_0^2}{4 \cdot E \cdot (V_0 - E)} \cdot \sinh^2 \sqrt{2 \cdot m \cdot (V_0 - E)} / \hbar \cdot L\right]^{-1}$$

$$T \approx \frac{16 \cdot E \cdot (V_0 - E)}{V_0^2} \cdot exp\left\{-2 \cdot \sqrt{2 \cdot m \cdot (V_0 - E)} \frac{L}{\hbar}\right\}; \quad E \ll V_0$$

 $sinh^2 x = \frac{1}{4} \cdot (e^{2x} + e^{-2x}) - 1/2$

Quantum tunneling

For a simple box potential one obtains the exact solution for transmission coefficient:

$$T(E) = exp\left\{-\sqrt{2 \cdot m \cdot (V_0 - E)} \frac{2 \cdot L}{\hbar}\right\}$$

In case of a more realistic potential (see below) one has to use step functions (Δx width) as an approximation

$$T(E) = exp\left\{-2\int_{x_i}^{x_a} dx \left(\frac{1}{\hbar} \cdot \sqrt{2 \cdot m \cdot [V(x) - E]}\right)\right\}$$

Gamow factor

probability for tunneling:

with Gamow factor G:

$$T(E) = e^{-2 \cdot G}$$

$$G(E_{\alpha}) = \int_{R_{i}}^{R_{a}} dr \left(\frac{1}{\hbar}\sqrt{2m(V(r) - E)}\right)$$

$$V(R_{a}) = E_{\alpha} = \frac{2Ze^{2}}{R_{a}}$$

$$G(E_{\alpha}) = \frac{2}{\hbar}\sqrt{2m}\int_{R_{i}}^{R_{a}} dr \sqrt{\frac{2Ze^{2}}{r} - E}$$

$$= \frac{2}{\hbar}\sqrt{\frac{2m}{E}}2Ze^{2} \left\{ \arccos\sqrt{\frac{R_{i}}{R_{a}}} - \sqrt{\frac{R_{i}}{R_{a}}} - \frac{R_{i}^{2}}{R_{a}^{2}} \right\}$$

notice
$$\frac{R_i}{R_a} = \frac{E_{\alpha}}{V_C}$$
 for thick barrier $E_{\alpha} \ll V_C$ or $R_a \gg R_i$ $\left\{ \arccos \sqrt{\frac{R_i}{R_a} - \sqrt{\frac{R_i}{R_a} - \frac{R_i^2}{R_a^2}}} \right\} \approx \frac{\pi}{2} - \sqrt{\frac{R_i}{R_a}}$

α-decay systematics: Geiger-Nuttall law

\diamond Geiger-Nuttall law: Relation between the half-life and the energy of α -particles

Ansatz for α -decay probability λ [s⁻¹]:

 $\lambda = S \cdot \omega \cdot P$

- **S** is the probability that an α-particle has been formed inside of the nucleus
- ω is the frequency of the α-particle hitting the Coulomb barrier V₀, where the velocity v is given by the kinetic energy and R is the nuclear radius

$$\omega = \frac{1}{\Delta t} = \frac{v}{2R} = \frac{\sqrt{2V_0/m_{\alpha}}}{2R} = \frac{\sqrt{2 \cdot \frac{50MeVc^2}{3727MeV}}}{2 \cdot 10fm} \sim 2 \cdot 10^{21} \, s^{-1}$$

• $\mathbf{P} = T(E) = e^{-2G}$ is the probability of the tunneling process, where G is the Gamow factor

 $ln\lambda = lnS - ln\Delta t - 2G(E_{\alpha})$ $= b(Z) - a\frac{Z}{\sqrt{E_{\alpha}}} \approx -a\frac{Z}{\sqrt{E_{\alpha}}}$

binding energy per nucleon in nucleus

Angular momentum in α -decay

If the α -particle carries off angular momentum, we must add the repulsive potential associated with the centrifugal barrier to the Coulomb potential, $V_C(r)$:

$$V(r) = V_C(r) + \frac{\ell(\ell+1)\hbar^2}{2m_{\alpha}r^2}$$

The effect on $_{90}$ Th with Q=4.5 MeV is:

Angular momentum in α -decay

Cluster decay probability

If α decay can occur, surely ⁸Be and ¹²C decay can occur as well. It is just a matter of relative probability. For these decays, the escape probabilities are given approximately by:

The last estimate is for a ^AX cluster, with Z protons and an atomic mass of A.

