Outline: electron spectroscopy

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. Coulomb excitation and fusion reaction
- 2. surface oscillations in deformed nuclei
- 3. E0/E2 branching ratio
- 4. experiments with orange spectrometer

Doppler-corrected e^{-} and γ -ray spectroscopy

Physical Motivation

- In-beam conversion electron spectroscopy complements the results obtained from γ-spectroscopy
- > A method for determining the multipolarity of nuclear transitions
- The only method for detecting E0-transitions

Doppler Correction after Inelastic Heavy Ion Scattering

- > ²³⁸U + ¹⁸¹Ta system at the Coulomb barrier
- Electron spectroscopy with mini-orange devices

Doppler Correction after (HI,xn)-Reaction

- \geq ²⁶Mg(¹³⁶Xe,4n)¹⁵⁸Dy reaction
- \blacktriangleright Electron spectroscopy with high transmission orange- β spectrometer

Summary

²⁰⁷Bi source

207 Bi emits γ -rays and electrons

γ-energy [keV]	e-energy [keV]
569.6	481.7 [K]
	553.8-556.7 [L]
	565.8-567.2 [M]
1063.7	975.7 [K]
	1047.8-1050.6 [L]
	1059.8-1061.2 [M]

Energy resolution with ²⁰⁷Bi source in vacuum

experimental set-up

MICRON #2512-17

Voltage: 200V

²⁰⁷ Bi	E=482, 976 keV
range	0.94, 2.31 mm (e ⁻ e ⁻ interaction)

Conversion electron spectroscopy

lifetime of a nuclear state:

$$\tau = \left\{ \sum_{K} \sum_{L} \delta_{N \to K}^{2} (L) \cdot \left[1 + \alpha_{N \to K} (L) \right] \right\}^{-1}$$

$$\delta_{N \to M}^2 (E2) = 1.225 \cdot 10^{13} \cdot E_{\gamma}^5 \cdot B(E2; N \to M)$$

total conversion coefficient:

$$\alpha_{N\to K}(L) = \frac{I_e}{I_{\gamma}}$$

Coulomb excitation

Coulomb excitation experiment

Doppler effect

Surface oscillations in deformed nuclei

GSİ

E0/E2 branching ratio

$$\frac{Y_e(E0)}{Y_{\gamma}(E2)} = \frac{\Omega_K [s^{-1}]}{2.56 \cdot 10^9 \cdot A^{4/3} \cdot E_{\gamma}^5 [MeV]} \cdot \frac{B(E0; I \to I')}{B(E2; I \to I')}$$

= 14 β^2 for $2_\beta \rightarrow 2$

 Ω_{K} : conversion probability electronic factor

D.A. Bell et al.; Can. J. of Phys. 48 (1970),2542

Doppler-corrected e⁻ and γ-ray spectroscopy

γ-ray spectrum

e⁻ spectrum

Lorentz transformation

total energy:

$$E^* = -\gamma \cdot v \cdot P \cdot \cos\theta + \gamma \cdot E$$

with

$$E = \sqrt{(mc^2)^2 + (Pc)^2}$$

 E^* , P^* total energy and momentum in the rest system E, P total energy and momentum in the laboratory system

Doppler formula for zero-mass particle (photon): E=Pc $E^* = -\gamma \cdot \beta \cdot E \cdot cos\theta + \gamma \cdot E$ $E^* = \gamma \cdot E(1 - \beta \cdot cos\theta)$

Hendrik Lorentz

E. Byckling, K. Kajantie J. Wiley & Sons London

Lorentz transformation

Contraction of the solid angle element in the laboratory system

$$\frac{d\Omega}{d\Omega^*} = \left\{\frac{E^*}{E}\right\}^2$$

with

$$E^* = \gamma \cdot E \cdot (1 - \beta \cdot \cos\theta)$$
 Doppler formula

REMINDER

Electron spectroscopy with mini-orange devices

J. v. Klinken et al.; NIM 151 (1978) 433 T. Dresel et al.; NIM A275 (1989) 301

magnetic filters

 $SmCo_5$ magnets for symmetric configuration 1 - 5 kG

Experimental arrangement

Doppler broadening

 $\Delta \vartheta_e = 20^0$ target – Mini-Orange: 19 cm Mini-Orange – Si detector: 6 cm

For projectile excitation:

$$T_e^* = \gamma \cdot T_e \cdot \left\{ 1 - \beta_1 \cdot \sqrt{1 + 2m_e \, c^2 / T_e} \cdot \cos\theta_{e1} \right\} + m_e c^2 \cdot (\gamma - 1)$$

with

$$cos\theta_{e1} = cos\vartheta_1 cos\vartheta_e + sin\vartheta_1 sin\vartheta_e cos(\varphi_e - \varphi_1)$$

REMINDER

Lorentz transformation

Electron spectroscopy with mini-orange devices

transmission window

Coulomb excitation experiment

Experimental arrangement

optimal energy resolution: $\cos \theta_{e1} = \pm 1$

Compound nucleus formation

Lorentz transformation:

$$T_{e}^{*} = \gamma T_{e} \left\{ 1 - \beta_{cm} \sqrt{1 + 2m_{e}c^{2}/T_{e}} \ \underline{\cos \vartheta_{e}} \right\} + m_{e}c^{2}(\gamma - 1)$$

$$\frac{\Delta T_{e}^{*}}{T_{e}^{*}} = \frac{\beta_{cm}\sqrt{1 + 2m_{e}c^{2}/T_{e}} \sin \vartheta_{e}\Delta \vartheta_{e}}{\left\{1 - \beta_{cm}\sqrt{1 + 2m_{e}c^{2}/T_{e}} \cos \vartheta_{e}\right\} + m_{e}c^{2}(\gamma - 1)}$$

Experimental arrangement with orange spectrometer

Conversion electron spectroscopy after (HI,xn)-reactions

resolution of the spectrometer including Doppler correction		$\left(\frac{\Delta p}{p}\right)_{e}/\%$	
as calculated for a point source		0.4	
scattering in the target	(i)	0.004	
beam optics	(ii)	0.11	
evaporation of neutrons	(iii)	0.09	
energy loss in the target	(iv)	0.31	~
energy straggling of the projectiles	(v)	0.006	
quadratic sum experimental resolution	0.53 0.56	%	

A. Balanda et al.; GSI 79-11, p.50

High resolution in-beam γ -ray and conversion electron spectroscopy can be performed in inelastic HI scattering and in (HI,xn)-reactions.

The strong Doppler broadening can be compensated for by proper positioning of the detection devices.

This is demonstrated for Ge-detectors, mini-orange devices and orange- β -spectrometer.

The observed width of γ -ray lines and conversion lines at an emitter velocity of v/c=10% was $\Delta E_{\gamma}/E_{\gamma} = \Delta T_e/T_e \simeq 1\%$.

