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γ-ray spectroscopy

 γ-decay is an electromagnetic process where the nucleus decreases in excitation 
energy, but does not change proton or neutron numbers

 This decay process only involves the emission of photons (γ-rays carry spin 1)
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Electromagnetic spectrum
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Electromagnetic decay modes

 Electron conversion 
coefficients

 E0 transitions: ΔL=0

electron conversion

 Angular distribution 
with spin oriented

 Angular correlations
 Polarization effects

γ-rays

 Pair conversion 
coefficients

 E0 transitions: ΔL=0

e+ - e- pair

K
LM

higher order effects: for example 2 photon emission is very weak
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γ-decay

 Gamma-ray emission is usually the dominant decay mode

137Cs detected in red: NaI scintillator
blue: HPGe (high purity Ge semiconductor)

Measurements of γ-rays let us deduce: 
energy, spin (angular distr. / correl.), parity (polarization), magnetic moment, 
lifetime (recoil distance, Doppler shift), …
of the involved nuclear levels.

𝑍𝑍
𝐴𝐴𝑋𝑋𝑁𝑁∗ → 𝑍𝑍

𝐴𝐴𝑋𝑋𝑁𝑁
∗
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γ-decay in a nutshell

 The photon emission of the nucleus essentially results from a re-ordering of 
nucleons within the shells.

 This re-ordering often follows α or β decay, and moves the system into a more 
energetically favorable state.
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γ-decay

γ-ray spectrum of natU
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γ-decay

Most β-decay transitions are followed by γ-decay.
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Classical electrodynamics

 The nucleus is a collection of moving charges, which can induce 
magnetic/electric fields

 The power radiated into a small area element is proportional to 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃

 The average power radiated for an electric dipole is:

𝑃𝑃 =
1

12𝜋𝜋𝜖𝜖0
𝜔𝜔4

𝑐𝑐3
𝑑𝑑2

 For a magnetic dipole is

𝑃𝑃 =
1

12𝜋𝜋𝜖𝜖0
𝜔𝜔4

𝑐𝑐5
𝜇𝜇2
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Electric/magnetic dipoles

Electric and magnetic dipole fields have opposite parity:
Magnetic dipoles have even parity and electric dipole fields have odd parity.

⇒ 𝜋𝜋 𝑀𝑀𝑀 = −1 𝑀+1 𝑎𝑎𝑠𝑠𝑑𝑑 𝜋𝜋 𝐸𝐸𝑀 = −1 𝑀
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Higher order multipoles

It is possible to describe the angular distribution of the radiation field as a function 
of the multipole order using Legendre polynomials.

 𝑀:     The index of radiation
2𝑀:      The multipole order of the radiation

 𝑀 = 1 → 𝐷𝐷𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑀 = 2 → 𝑄𝑄𝑄𝑄𝑎𝑎𝑑𝑑𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑀 = 3 → 𝑂𝑂𝑐𝑐𝑂𝑂𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 The associated Legendre polynomials 𝑃𝑃2𝑀 𝑐𝑐𝐷𝐷𝑠𝑠 𝜃𝜃 are:
For 𝑀 = 1: 𝑃𝑃2 = 1

2
3 � 𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 − 1

For 𝑀 = 2: 𝑃𝑃4= 1
8

35𝑐𝑐𝐷𝐷𝑠𝑠4 𝜃𝜃 − 30𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 + 3
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Angular momentum in γ-decay

 The photon is a spin-1 boson

 Like α-decay and β-decay the emitted γ-ray can carry away units of angular 
momentum ℓ, which has given us different multipolarities for transitions.

 For orbital angular momentum, we can have values 𝑀 = 0,1,2,3,⋯ that  
correspond to our multipolarity.

 Therefore, our selection rule is:

𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑓𝑓 ≤ 𝑀 ≤ 𝐼𝐼𝑖𝑖 + 𝐼𝐼𝑓𝑓
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Characteristics of multipolarity

L multipolarity π(Eℓ) / π(Mℓ) angular distribution

1 dipole -1 / +1

2 quadrupole +1 / -1

3 octupole -1 / +1

4 hexadecapole +1 / -1

⁞

ℓ = 1 ℓ =2

𝐸𝐸𝛾𝛾 = 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓

𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑓𝑓 ≤ 𝑀 ≤ 𝐼𝐼𝑖𝑖 + 𝐼𝐼𝑓𝑓

∆𝜋𝜋 𝐸𝐸𝑀 = −1 𝑀

∆𝜋𝜋 𝑀𝑀𝑀 = −1 𝑀+1
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The basics of the situation

ℓ

2

0

2 − 0 ≤ 𝑀 ≤ 2 + 0

Here Δ𝐼𝐼 = 2 and 𝑀 = 2
this is a stretched transition
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The basics of the situation

ℓ

3

2

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐼𝐼 = 1 but 𝑀 = 1,2,3,4,5
and the transition can be a mix of 5 multipolarities
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The basics of the situation

𝐸𝐸𝛾𝛾, 𝑀,Δ𝜋𝜋

Electromagnetic transitions:

Δ𝜋𝜋 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑂𝑂𝑄𝑄𝑠𝑠𝑐𝑐 = −1 𝑀

Δ𝜋𝜋 𝑚𝑚𝑎𝑎𝑚𝑚𝑠𝑠𝐷𝐷𝑂𝑂𝑠𝑠𝑐𝑐 = −1 𝑀+1

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4

no M1 E2 M3 E4
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The basics of the situation

ℓ

2+

0+

2 − 0 ≤ 𝑀 ≤ 2 + 0

𝑀 = 2 and no change in parity

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4

no M1 E2 M3 E4
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The basics of the situation

ℓ

3+

2-

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐼𝐼 = 1 but 𝑀 = 1,2,3,4,5

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4

no M1 E2 M3 E4

mixed E1,M2,E3,M4,E5



Hans-Jürgen Wollersheim - 2022

The basics of the situation

ℓ

3+

2+

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐽𝐽 = 1 but 𝑀 = 1,2,3,4,5

mixed M1,E2,M3,E4,M5

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4

no M1 E2 M3 E4
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The basics of the situation

3+ → 2+: mixed M1,E2,M3,E4,M5

3+ → 2−: mixed E1,M2,E3,M4,E5

In general only the lowest 2 multipoles compete

and (for reasons we will see later)

𝑀 + 1 multipole generally only competes if it is electric:

3+ → 2+: mixed M1/E2

3+ → 2−: almost pure E1 (very little M2 admixture)
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Characteristics of multipolarity

L multipolarity π(Eℓ) / π(Mℓ) angular distribution

1 dipole -1 / +1

2 quadrupole +1 / -1

3 octupole -1 / +1

4 hexadecapole +1 / -1

⁞

parity: electric multipoles π(Eℓ) = (-1)ℓ, magnetic multipoles π(Mℓ) = (-1)ℓ+1

ℓ = 1 ℓ =2

The power radiated is proportional to:

where σ means either E or M and ℳ 𝜎𝜎𝑀 is the E or M multipole moment of the appropriate kind.

𝑃𝑃 𝜎𝜎𝑀 ∝
2 𝑀 + 1 � 𝑐𝑐

𝜀𝜀0 � 𝑀 � 2𝑀 + 1 ‼ 2
𝜔𝜔
𝑐𝑐

2𝑀+2
ℳ 𝜎𝜎𝑀 2
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Emission of electromagnetic radiation

where Eγ = Ei – Ef is the energy of the emitted γ quantum in MeV (Ei, Ef are the nuclear level 
energies, respectively), and the reduced transition probabilities B(Eℓ) in units of e2(barn)ℓ and
B(Mℓ) in units of 𝜇𝜇𝑁𝑁2 = ⁄𝐷𝐷ℏ 2𝑚𝑚𝑁𝑁𝑐𝑐 2 𝑓𝑓𝑚𝑚 2𝑀−2
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Single particle transition (Weisskopf estimate)

For the first few values of  λ, the Weisskopf estimates are

gamma energy Eγ [keV]

tra
ns

iti
on

 p
ro

ba
bi

lit
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λ
[s

-1
]
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Conversion electrons

Energetics of CE-decay (i=K, L, M,….)
Ei = Ef + Ece,i + EBE,i

γ- and CE-decays are independent; transition probability (λ ~ Intensity)
λT = λγ + λCE = λγ + λK + λL + λM……

Conversion coefficient

𝜶𝜶𝒊𝒊 =
𝝀𝝀𝑪𝑪𝑪𝑪,𝒊𝒊

𝝀𝝀𝜸𝜸
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Internal conversion

 For an electromagnetic transition internal conversion can occur instead of emission of 
gamma radiation. In this case the transition energy Q = Eγ will be transferred to an electron 
of the atomic shell.

Te = Eγ - Be
Te: kinetic energy of the electron
Be: binding energy of the electron

internal conversion is important for:
- heavy nuclei ~ Z3

- high multipolarities Eℓ or Mℓ
- small transition energies

𝛼𝛼𝑘𝑘 𝐸𝐸𝐷𝐷 ∝ 𝑍𝑍3
𝐿𝐿

𝐿𝐿 + 1
2𝑚𝑚𝑒𝑒𝑐𝑐2

𝐸𝐸

𝐿𝐿+ ⁄5 2
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Electron spectroscopy

ΔΩ
4𝜋𝜋

= 26%

𝑇𝑇𝑒𝑒∗ = 𝛾𝛾 � 𝑇𝑇𝑒𝑒 � 1 − 𝛽𝛽1 � 1 + 2𝑚𝑚𝑒𝑒 ⁄𝑐𝑐2 𝑇𝑇𝑒𝑒 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 + 𝑚𝑚𝑒𝑒𝑐𝑐2 � 𝛾𝛾 − 1

𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 = 𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗1𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗1𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝑒𝑒𝑐𝑐𝐷𝐷𝑠𝑠 𝜑𝜑𝑒𝑒 − 𝜑𝜑1

Doppler shift correction for projectile:
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Comparison of α-decay, β-decay and γ-decay

𝜆𝜆 =
ℎ
𝐷𝐷

=
ℎ � 𝑐𝑐

𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 + 2𝑚𝑚𝑐𝑐2
=

1239.84 𝑀𝑀𝐷𝐷𝑀𝑀 𝑓𝑓𝑚𝑚
𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 + 2𝑚𝑚𝑐𝑐2de Broglie wavelength:

decay Energy [MeV] de Broglie λ [fm]

α-particle, mα = 3727 MeV/c2 5 6.42

β-particle, me = 0.511 MeV/c2 1 871.92

γ-photon 1 𝜆𝜆 = �ℎ � 𝑐𝑐
𝐸𝐸 = �1240

𝐸𝐸

For α-particles this dimension is somewhat smaller than the nucleus and this is why a semi-
classical treatment of α-decay is successful.
The typical β-particle has a large wavelength λ in comparison to the nuclear size and a 
quantum mechanical is dictated and wave analysis is called for.
For γ-decay the wavelength λ ranges from 12400 – 1240 fm (0.1 – 1 MeV). Clearly, only a 
quantum mechanical approach has a chance of success.
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γ-decay

γ-spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity 
and ΔE are all measurable.

Transition rates between initial Ψ𝑁𝑁∗ and final Ψ𝑁𝑁´ nuclear states, resulting from electromagnetic 
decay producing a photon with energy 𝐸𝐸𝛾𝛾 can be described by Fermi´s Golden rule:

where ℳ𝑒𝑒𝑒𝑒 is the electromagnetic transition operator and ⁄𝑑𝑑𝑠𝑠𝛾𝛾 𝑑𝑑𝐸𝐸𝛾𝛾 is the density of final 
states. The photon wave function 𝜓𝜓𝛾𝛾 and ℳ𝑒𝑒𝑒𝑒 are well known, therefore measurements of λ
provide detailed knowledge of nuclear structure.

𝜆𝜆 =
2𝜋𝜋
ℏ

Ψ𝑁𝑁´ 𝜓𝜓𝛾𝛾 ℳ𝑒𝑒𝑒𝑒 Ψ𝑁𝑁∗
2 𝑑𝑑𝑠𝑠𝛾𝛾
𝑑𝑑𝐸𝐸𝛾𝛾

A γ-decay lifetime is typically 10-12 [s] and sometimes even as short as 10-19 [s]. However, this 
time span is an eternity in the life of an excited nucleon. It takes about 4·10 -22 [s] for a nucleon 
to cross the nucleus.
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