Outline: γ-decay

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. electromagnetic spectrum
- 2. angular momentum in γ -decay
- 3. emission of electromagnetic radiation
- 4. single particle transition
- 5. conversion electrons

γ-ray spectroscopy

- * γ -decay is an *electromagnetic process* where the nucleus decreases in excitation energy, but does not change proton or neutron numbers
- This decay process only involves the emission of photons (γ -rays carry spin 1)

THE ELECTROMAGNETIC SPECTRUM

GSI

Electromagnetic decay modes

higher order effects: for example 2 photon emission is very weak

✤ Gamma-ray emission is usually the dominant decay mode

Measurements of γ -rays let us deduce: energy, spin (angular distr. / correl.), parity (polarization), magnetic moment, lifetime (recoil distance, Doppler shift), ... of the involved nuclear levels.

blue: HPGe (high purity Ge semiconductor)

¹³⁷Cs detected in red: NaI scintillator

γ-decay in a nutshell

- The photon emission of the nucleus essentially results from a re-ordering of nucleons within the shells.
- * This re-ordering often follows α or β decay, and moves the system into a more energetically favorable state.

γ-decay

GSI

γ-decay

Most β -decay transitions are followed by γ -decay.

Classical electrodynamics

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields
- The power radiated into a small area element is proportional to $sin^2(\theta)$
- The average power radiated for an electric dipole is:

$$P = \frac{1}{12\pi\epsilon_0} \frac{\omega^4}{c^3} d^2$$

For a magnetic dipole is

$$P = \frac{1}{12\pi\epsilon_0} \frac{\omega^4}{c^5} \mu^2$$

Electric/magnetic dipoles

Electric and magnetic dipole fields have opposite parity: Magnetic dipoles have even parity and electric dipole fields have odd parity.

Higher order multipoles

It is possible to describe the angular distribution of the radiation field as a function of the *multipole order* using Legendre polynomials.

- ℓ : The index of radiation
 - 2^{ℓ} : The multipole order of the radiation
- $\ell = 1 \rightarrow Dipole$ $\ell = 2 \rightarrow Quadrupole$ $\ell = 3 \rightarrow Octupole$
- The associated Legendre polynomials $P_{2\ell}(cos(\theta))$ are: For $\ell = 1$: $P_2 = \frac{1}{2}(3 \cdot cos^2(\theta) - 1)$ For $\ell = 2$: $P_4 = \frac{1}{8}(35cos^4(\theta) - 30cos^2(\theta) + 3)$

Angular momentum in γ-decay

- The photon is a spin-1 boson
- * Like α-decay and β-decay the emitted γ-ray can carry away units of *angular momentum* ℓ , which has given us different multipolarities for transitions.
- ✤ For orbital angular momentum, we can have values $\ell = 0, 1, 2, 3, \cdots$ that correspond to our multipolarity.
- Therefore, our selection rule is:

$$\left|I_i - I_f\right| \le \ell \le I_i + I_f$$

Characteristics of multipolarity

L	multipolarity	$\pi(\mathrm{E}\ell) / \pi(\mathrm{M}\ell)$	angular distribution	$\ell = 1$
1	dipole	-1 / +1		
2	quadrupole	+1 / -1		X _{1,±1}
3	octupole	-1 / +1		
4	hexadecapole	+1 / -1		
÷				

$$E_{\gamma} = E_i - E_f$$
$$|I_i - I_f| \le \ell \le I_i + I_f$$
$$\Delta \pi (E\ell) = (-1)^{\ell}$$
$$\Delta \pi (M\ell) = (-1)^{\ell+1}$$

 $|2-0| \le \ell \le 2+0$

Here $\Delta I = 2$ and $\ell = 2$ this is a stretched transition

 $|3-2| \le \ell \le 3+2$

Here $\Delta I = 1$ but $\ell = 1,2,3,4,5$ and the transition can be a mix of 5 multipolarities

Electromagnetic transitions:

 $\Delta \pi (electric) = (-1)^{\ell}$ $\Delta \pi (magnetic) = (-1)^{\ell+1}$

Λπ	yes	E1	M2	E3	M4
	no	M1	E2	M3	E4

 $|2-0| \le \ell \le 2+0$

 $\ell = 2$ and no change in parity

 $|3-2| \le \ell \le 3+2$

Here $\Delta I = 1$ but $\ell = 1, 2, 3, 4, 5$

Λπ	yes	E1	M2	E3	M4

mixed E1,M2,E3,M4,E5

 $|3-2| \le \ell \le 3+2$

Here
$$\Delta J = 1$$
 but $\ell = 1, 2, 3, 4, 5$

mixed M1,E2,M3,E4,M5

 $3^+ \rightarrow 2^+$: mixed M1,E2,M3,E4,M5 $3^+ \rightarrow 2^-$: mixed E1,M2,E3,M4,E5

In general only the lowest 2 multipoles compete

and (for reasons we will see later)

 $\ell + 1$ multipole generally only competes if it is electric:

 $3^+ \rightarrow 2^+$: mixed M1/E2 $3^+ \rightarrow 2^-$: almost pure E1 (very little M2 admixture)

Characteristics of multipolarity

L	multipolarity	$\pi(\mathrm{E}\ell) / \pi(\mathrm{M}\ell)$	angular distribution	$\ell = 1$	ℓ =2
1	dipole	-1 / +1			
2	quadrupole	+1 / -1		X _{1,±1}	$\begin{array}{c} X_{2,\pm 1} \\ X_{2,\pm 2} \end{array}$
3	octupole	-1 / +1			
4	hexadecapole	+1 / -1			
÷				A second second	

parity: electric multipoles $\pi(E\ell) = (-1)^{\ell}$, magnetic multipoles $\pi(M\ell) = (-1)^{\ell+1}$

The power radiated is proportional to:

$$P(\sigma \ell) \propto \frac{2(\ell+1) \cdot c}{\varepsilon_0 \cdot \ell \cdot [(2\ell+1)!!]^2} \left(\frac{\omega}{c}\right)^{2\ell+2} |\mathcal{M}(\sigma \ell)|^2$$

where σ means either E or M and $\mathcal{M}(\sigma \ell)$ is the E or M multipole moment of the appropriate kind.

Emission of electromagnetic radiation

$$\begin{split} T(E1; I_i \to I_f) &= 1.590 \ 10^{17} \ E_{\gamma}^3 \ B(E1; I_i \to I_f) \\ T(E2; I_i \to I_f) &= 1.225 \ 10^{13} \ E_{\gamma}^5 \ B(E2; I_i \to I_f) \\ T(E3; I_i \to I_f) &= 5.709 \ 10^8 \ E_{\gamma}^7 \ B(E3; I_i \to I_f) \\ T(E4; I_i \to I_f) &= 1.697 \ 10^4 \ E_{\gamma}^9 \ B(E4; I_i \to I_f) \\ T(M1; I_i \to I_f) &= 1.758 \ 10^{13} \ E_{\gamma}^3 \ B(M1; I_i \to I_f) \\ T(M2; I_i \to I_f) &= 1.355 \ 10^7 \ E_{\gamma}^5 \ B(M2; I_i \to I_f) \\ T(M3; I_i \to I_f) &= 6.313 \ 10^0 \ E_{\gamma}^7 \ B(M3; I_i \to I_f) \\ T(M4; I_i \to I_f) &= 1.877 \ 10^{-6} \ E_{\gamma}^9 \ B(M4; I_i \to I_f) \end{split}$$

where $E_{\gamma} = E_i - E_f$ is the energy of the emitted γ quantum in MeV (E_i , E_f are the nuclear level energies, respectively), and the reduced transition probabilities B(E ℓ) in units of $e^2(barn)^{\ell}$ and B(M ℓ) in units of $\mu_N^2 = (e\hbar/2m_Nc)^2 (fm)^{2\ell-2}$

Single particle transition (Weisskopf estimate)

$$B(E\lambda; I_i \to I_{gs}) = \frac{(1.2)^{2\lambda}}{4\pi} (\frac{3}{\lambda+3})^2 A^{2\lambda/3} e^2 (fm)^{2\lambda}$$

$$B(M\lambda; I_i \to I_{gs}) = \frac{10}{\pi} (1.2)^{2\lambda - 2} (\frac{3}{\lambda + 3})^2 A^{(2\lambda - 2)/3} \ \mu_N^2 (fm)^{2\lambda - 2}$$

For the first few values of λ , the Weisskopf estimates are

$$\begin{split} B(E1;I_i \to I_{gs}) &= 6.446 \ 10^{-4} \ A^{2/3} \ e^2(barn) \\ B(E2;I_i \to I_{gs}) &= 5.940 \ 10^{-6} \ A^{4/3} \ e^2(barn)^2 \\ B(E3;I_i \to I_{gs}) &= 5.940 \ 10^{-8} \ A^2 \ e^2(barn)^3 \\ B(E4;I_i \to I_{gs}) &= 6.285 \ 10^{-10} \ A^{8/3} \ e^2(barn)^4 \\ B(M1;I_i \to I_{gs}) &= 1.790 \ (\frac{e\hbar}{2Mc})^2 \end{split}$$

GSİ

Conversion electrons

Energetics of CE-decay (i=K, L, M,....) $E_i = E_f + E_{ce,i} + E_{BE,i}$

 γ - and CE-decays are independent; transition probability ($\lambda \sim$ Intensity)

$$\lambda_{\rm T} = \lambda_{\gamma} + \lambda_{\rm CE} = \lambda_{\gamma} + \lambda_{\rm K} + \lambda_{\rm L} + \lambda_{\rm M} \dots$$

Conversion coefficient

$$\alpha_i = \frac{\lambda_{CE,i}}{\lambda_{\gamma}}$$

Internal conversion

• For an electromagnetic transition internal conversion can occur instead of emission of gamma radiation. In this case the transition energy $Q = E_{\gamma}$ will be transferred to an electron of the atomic shell.

 $T_e = E_{\gamma} - B_e$

 T_e : kinetic energy of the electron

 \mathbf{B}_{e} : binding energy of the electron

internal conversion is important for:

- heavy nuclei ~ Z^3
- high multipolarities $E\ell$ or $M\ell$
- small transition energies

$$\alpha_k(El) \propto \mathbb{Z}^3 \left(\frac{L}{L+1}\right) \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$$

Electron spectroscopy

Doppler shift correction for projectile:

$$T_e^* = \gamma \cdot T_e \cdot \left\{ 1 - \beta_1 \cdot \sqrt{1 + 2m_e c^2/T_e} \cdot \cos\theta_{e1} \right\} + m_e c^2 \cdot (\gamma - 1)$$

 $cos\theta_{e1} = cos\vartheta_1 cos\vartheta_e + sin\vartheta_1 sin\vartheta_e cos(\varphi_e - \varphi_1)$

resolution of the spectrometer		$\left(\frac{\Delta p}{p}\right)_{e}/\%$	
as calculated for a point source		0.4	
scattering in the target	(i)	0.004	
beam optics	(ii)	0.11	
evaporation of neutrons	(iii)	0.09	
energy loss in the target	(iv)	0.31	*
energy straggling of the projectiles	(v)	0.006	
quadratic sum experimental resolution		0.53 0.56	%

Comparison of α -decay, β -decay and γ -decay

de Broglie wavelength:
$$\lambda = \frac{h}{p} = \frac{h \cdot c}{\sqrt{E_{kin} \cdot (E_{kin} + 2mc^2)}} = \frac{1239.84[MeV fm]}{\sqrt{E_{kin} \cdot (E_{kin} + 2mc^2)}}$$

decay	Energy [MeV]	de Broglie λ [fm]
α -particle, $m_{\alpha} = 3727 \text{ MeV/c}^2$	5	6.42
β -particle, $m_e = 0.511 \text{ MeV/c}^2$	1	871.92
γ-photon	1	$\lambda = \frac{h \cdot c}{E} = \frac{1240}{E}$

For α -particles this dimension is somewhat smaller than the nucleus and this is why a semiclassical treatment of α -decay is successful.

The typical β -particle has a large wavelength λ in comparison to the nuclear size and a quantum mechanical is dictated and wave analysis is called for.

For γ -decay the wavelength λ ranges from 12400 – 1240 fm (0.1 – 1 MeV). Clearly, only a quantum mechanical approach has a chance of success.

γ-decay

 γ -spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity and ΔE are all measurable.

Transition rates between initial Ψ_N^* and final Ψ_N' nuclear states, resulting from electromagnetic decay producing a photon with energy E_{γ} can be described by Fermi's Golden rule:

$$\lambda = \frac{2\pi}{\hbar} \left| \left\langle \Psi_{N}^{'} \psi_{\gamma} \right| \mathcal{M}_{em} \left| \Psi_{N}^{*} \right\rangle \right|^{2} \frac{dn_{\gamma}}{dE_{\gamma}}$$

where \mathcal{M}_{em} is the electromagnetic transition operator and dn_{γ}/dE_{γ} is the density of final states. The photon wave function ψ_{γ} and \mathcal{M}_{em} are well known, therefore measurements of λ provide detailed knowledge of nuclear structure.

A γ -decay lifetime is typically 10⁻¹² [s] and sometimes even as short as 10⁻¹⁹ [s]. However, this time span is an eternity in the life of an excited nucleon. It takes about 4.10⁻²² [s] for a nucleon to cross the nucleus.

