Outline: Characterization of segmented Ge detectors

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. γ -ray camera
- 2. moving γ -ray source and Ge detector
- 3. scanner at GSI for segmented detectors

The motivation behind the project

Existing technology relies on BGO scintillator technology

- Limited position resolution
- High patient dose requirement.
- Poor energy resolution only accept photopeak events.
- Will not function in large magnetic field
- SPECT applications utilizing Compton Camera techniques.

σ

Ð

Requirements:

- **\therefore** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (**FOV**) = $8x9 \text{ cm}^2$
 - Large FOV of ~20 cm diam.
 - Low spatial resolution 0.5-1 cm

Small FOV of 3-4 cm diam. High spatial resolution 2-3 mm

Gamma Camera: Individual multi-anode readout

16 wires in X axis and 16 wires in Y axis

C.Domingo Pardo, N. Goel, et.al., IEEE, Vol.28, Dec. 2009

Hamamatsu R2486 PSPMT

Photocathode = 56.25 mm

LYSO scintillator $Lu_{2(1-x)}Y_{2x}SiO_5$

 $\label{eq:constraint} \begin{array}{l} d=76 \mbox{ mm} \\ t=3 \mbox{ mm} \\ \rho=7.4 \mbox{ g/cm}^3 \end{array}$

Lutetium-yttrium oxyorthosilicate

Intrinsic activity of LYSO

LYSO: Lu_{1.8}Y_{0.2}SiO₅:Ce

scintillating properties:

high density (7.1 g/cm³) fast decay time (40 ns) very high light output (~ 27600 ph/MeV)

- ***** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (FOV) = $8x9 \text{ cm}^2$

- ***** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (FOV) = $8x9 \text{ cm}^2$

GSİ

- ***** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (FOV) = $8x9 \text{ cm}^2$

- ***** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (FOV) = $8x9 \text{ cm}^2$

- ***** Excellent resolution $\Delta x = 2 \text{ mm}$
- Large field of view (FOV) = $8x9 \text{ cm}^2$

Efficiency versus resolution

With a source at rest, the intrinsic resolution of the detector can be reached;

efficiency decreases with the increasing detector-source distance.

Doppler broadening and position resolution

Segmented detectors

Gamma-ray tracking - the concept

Scanner at GSI

Requirements:

- 1. Position sensitive detector
 - Excellent $\Delta x/x$
 - Large field of view
- 2. Method to compare the pulses

Position sensitive detector

Characteristics:

- Faster
- Precision: 1-2 mm
- Imaging capability

Rotating table

• Determine: $X_r(x_m, y_m), Y_r(x_m, y_m)$

Gamma-ray scattering technique

Position reconstruction

C.W.Lerche, et.al., NIM A, Vol 537, pp. 326-330, Jan. 2005

Position reconstruction

Average spatial resolution in X and Y ~ 1mm

Scanner at GSI

Requirements:

- 1. Position sensitive detector
 - Excellent $\Delta x/x$
 - Large field of view
- 2. Method to compare the pulses

Position sensitive detector

Characteristics:

- Faster
- Precision: 1-2 mm
- Imaging capability

Rotating table

coincidence between the Germanium and BGO detectors for 90 degree Compton scattered events for depth determination

Advantage over conventional scanner: Full detector can be scanned in one measurement 10 times faster than a conventional scanner Accuracy of simulations can be checked for complex regions of electric field

Scanner based on pulse shape comparison scan

Scanner based on pulse shape comparison scan

Geometric crossing point: x,y,z

Pulse shape comparison scan method based on a position sensitive detector

χ^2 minimization method

GSĬ

Characterization of planar HPGe detector

Side view

Position sensitive detector

. .

t = 2 cm

Front view (0 deg):

Side view (90 deg):

Detector scan

Front view (0 deg):

Side view (90 deg):

Planar HPGe detector scan

Intensity distribution for photopeak events

AGATA: Advanced Gamma Tracking Array

- 4π array of germanium crystals
- 180 segmented crystals arranged around the reaction target
- 3D sensitivity

Symmetric AGATA prototype crystal

Signal shapes from all 36 segments

Most significant transient charge signals are from the direct neighbouring segments

Combined trace for pulse shape comparison

Direct neighbours of segment F3

We have the method, the device and the detector ready, lets do the scan of AGATA!

Gamma detector array

EUROBALL Cluster Detectors

photopeak eff. 2.8%

Signals from 36 segments + core are measured as a function of time (γ -ray interaction point)

New scanner at GSI

LYSO & SIPM (Silicon Photomultiplier Sensors, series C, 3mm)

single-photon avalanche diode

Advantages: High detection probability

Disadvantages:

Dark current (temperature)

www.onsemi.com/products/sensors/photodetectors-sipm-spad/silicon-photomultipliers-sipm/c-series-sipm

