Outline: From Ge(Li) to Germanium detector array

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. 1960ties and 70ties: Ge(Li) detectors
- 2. 1980ties: national HPGe detector arrays OSIRIS, HERA, TESSA
- 3. 1990ties: EUROBALL and GAMMASPHERE
- 4. 2000ties: position-sensitive Ge-arrays MINIBALL, EXOGAM, SEGA
- 5. under development: $4\pi \gamma$ -ray tracking arrays AGATA, GRETA

Alkali Halide Scintillation Counters

ROBERT HOFSTADTER

Princeton University, Princeton, New Jersey May 20, 1948

Phys. Rev. 74 (1948) 100

Invention of the NaI(Tl) detector 1948

Robert Hofstadter, after hearing about Callmann's work, started testing Tl activated alkali halide crystals. Na(Tl) was found to have the largest output

Germanium transistor

1947

by William Shockley, John Bardeen and Walter Brattain (left to right)

Early semiconductor devices

first transistor (Bell 1947)

hybrid circuits (1960)

first integrated circuit (1959)

Fairchild IC (1962)

E. M. Pell 1960

Ion Drift in an *n-p* Junction*

E. M. Pell

General Electric Research Laboratory, Schenectady, New York (Received August 19, 1959)

Gamma-ray interaction cross section

Photo effect: $\sim Z^{4-5}$, $E_{\gamma}^{-3.5}$ Compton: $\sim Z$, E_{γ}^{-1} Pair: $\sim Z^2$, increases with E_{γ}

First Ge(Li) detector: D.V. Freck and J. Wakefield

Nature 193, 669 (1962)

Ge(Li) detector, active volume: 0.2 cm³

NUCLEAR INSTRUMENTS AND METHODS 25 (1963) 185-187; © NORTH-HOLLAND PUBLISHING CO.

A HIGH RESOLUTION LITHIUM-DRIFT GERMANIUM GAMMA-RAY SPECTROMETER

A. J. TAVENDALE* and G. T. EWAN

Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited

Received 14 October 1963

Fig. 1. High energy region of gamma-ray spectrum of Co⁴⁰ observed with the lithium-drift germaniam detector. The detector was 18 mm in diameter and had a depletion of 8 mm. It was operated at 77° K with a bias of 450 V across the detector The intrinsic full energy peak efficiency was 0.2%. The spectrum shown above was obtained in 10 min using a 20 μ C Co⁴⁰ source. For comparison we show the same region of the spectrum observed with a good 3" \times 3" NaI stinillation spectrometer. This spectrometer had a resolution of 8.0% on the 661 keV y-ray in Ba¹²⁴.

1963 Tavendale and Ewan (Chalk River)

Ge(Li) detector, planar: 2 cm³

 $\Delta E = 6 \text{ keV} \text{ at } 1.3 \text{ MeV}$

use of a cooled FET reduced input noise to 0.7 eV (1965)

Li-drift apparatus at IKP Cologne

First coaxial detector 1968 $\Delta E = 3.5 \text{ keV} \text{ at } 1.3 \text{ MeV}$ 5.5 cm^3

The "five-in-one" Compton polarimeter (1974)

two concentric coaxial Ge(Li) detectors, outer detector 4-fold segmented

energy resolution 3.5 - 5 keV at 1.3 MeV

Fig. 1. Cross section of the polarimeter. W = thin window, CR = cryostat, C = crystal, T = Teflon insulation, P = crystal holder, F = cold finger.

Composite Ge-detectors

3(4) Ge(Li) detectors in a common cryostat

1976

resolution 2.1 keV at 1.3 MeV

for 3 but not for 4 detectors

FIG. 4. Three-crystal Compton polarimeter, Detector A acts as scatterer, the absorbers B and C are shielded from direct radiation by a 4 cm collimator of Densimed (see text). CR = cryostat, H = heat shielding.

First escape suppression spectrometer at Liverpool

John Francis Sharpey-Schafer

The scattering problem

High background hence suppression shield

High efficiency hence arrays of Escape Suppressed Spectrometer

Arrays of Escape Suppressed Spectrometers

TESSA0 the Escape Suppressed Spectrometer Array

The first one TESSA

Daresbury study weekend 1979 nuclei far from stability

UK Denmark collaboration Niels Bohr Institute 1980-1982 FN tandem

5 Ge(Li), 5 NaI(Tl) suppression shields

 γ^2 factor of 8 improvement in ph. ph. coincidences

no channel selection

TESSA1 14 element multiplicity filter

TESSA0 the Escape Suppressed Spectrometer Array

First Coulomb excitation experiments at UNILAC (1980)

 $i_{13/2}$ proton and $j_{15/2}$ neutron alignment in ²³⁵U and ²³⁷Np

TESSA3, NORDBALL, 8π Spectrometer

~ 1987

HERA at LBNL

BGO replaces NaI(Tl) $1 \text{ cm} \approx 1 \text{ inch}$ HERA (LBNL) 21 ESS (25% eff.) + BGO ball γ - γ - γ coincidences

Development of high-purity Ge at LBNL, Ortec, Umicore ...

ERDA NEWS

September 19, 1977

for the dependence of the second seco

ational War ssues (Wash-Cantus, Dilations, will larvey Lyon, Security, will oliferation.

Affairs Nelte in a meet-Institute for 1 Laxenburg,

iclear Energy t in a Confer-&D Manage-

PURE AND COSTLY—Lawrence Berkeley Lab scientists (I-r) William Hansen, Eugene Haller and Scott Hubbard gaze at a germanium crystal worth about \$15,000. Purified germanium has scientific applications in archeological dating, geological and chemical analysis, nuclear chemistry, physics and medicine. (LBL Photo)

Production of Ge(li) detectors was abandoned after 1978 when high-purity Ge (HPGe) detectors became commercially available

High Purity Germanium detector

GSİ

The first case of a high spin superdeformed band

GAMMASPERE 1993 Berkeley

70 detectors segmented into two halves to reduce the Doppler broadening

110 Ge detectors (70% eff.) escape suppression shields

M.A. Deleplanque, R.M. Diamond eds Gammasphere proposal 1987

EUROGAM II

24 CLOVER detectors with increased efficiency (130%) and improved granularity

F. A. Beck et al. Conf. Proc. 1994

Hans-Jürgen Wollersheim - 2022

From EUROGAM to EUROBALL

γ-ray

Late 1980's:

Discussion of a cluster of seven detectors with large efficiency in add-back mode

Conclusion: seven hexagonal detectors in a common cryostat

Encapsulated!

The EUROBALL cluster detector

10 kg HPGE rel. efficiency 600%

EUROBALL-3 demonstrator at GSI 1993

Darmstadt-Heidelberg Crystal Ball and EUROBALL-3 demonstrator 1993

EUROBALL 1997 - 2003

EUROBALL (2003-2009) at RISING Rare ISotope INvestigation at GSI

implantation in Cu-plate or in 9 DSSSD

15 Cluster detectors with 105 Ge crystals $\varepsilon_{\gamma} = 11\%$ at 1.3 MeV, 20% at 550 keV, 35% at 100 keV

very high γ-ray efficiency

high granularity (prompt flash problem)

S. Pietri et al., NIM B261 (2007), 1079

EUROBALL at RISING stopped beam set-up (2006-2009)

EUROBALL at RISING scattering experiment (2003-2005)

6-fold segmented, encapsulated MINIBALL detector

Position-sensitive Ge-detectors (pulse shape analysis)

MINIBALL at REX-ISOLDE

Cluster and MINIBALL detectors at RISING 2005

GSI

Doppler broadening and position resolution

The idea of γ -ray tracking

Compton shielded Ge

 $\begin{array}{c}
\varepsilon_{ph} \sim 10\% \\
N_{det} \sim 100 \\
\Omega \sim 40\% \\
\theta \sim 8^{0}
\end{array}$

large opening angle means poor energy resolution at high recoil velocity

Previously scattered γ -rays were wasted Technology is available to track them

Ge tracking array

combination of:

- segmented detectors
- digital electronics
- pulse processing
- tracking the -rays

651

180 hexagonal crystals		3 shapes	
60 triple-clusters		all equal	
Inner radius (Ge)		23.5 cm	
Amount of germanium		362 kg	
Solid angle coverage		82 %	
36-fold segmentation		6480 segments	
Singles rate		~50 kHz	
Efficiency:	43% (M _γ =	1) 28% (M _γ =30)
Peak/Total:	58% (M _y =	1) 49% (M _γ =30)

6660 high-resolution digital electronics channels Pulse Shape Analysis \rightarrow position sensitive operation mode γ -ray tracking algorithms to achieve maximum efficiency. Coupling to ancillary detectors for added selectivity

AGATA detectors and AGATA triple-cluster

Signals from 36 segments + core

are measured as a function of time $(\gamma$ -ray interaction point)

Ingredients of gamma-ray tracking

AGATA: pulse shape analysis

John Strachan

Signals from 36 segments + core

are measured as a function of time $(\gamma$ -ray interaction point)

Ce

PreSPEC-AGATA campaign (2012)

(CORCOL)

AGATA Cluster array

Au, Be target

> HECTOR BaF₂ array

PreSPEC-AGATA campaign (2012)

-849

P

The second

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

Scattering experiment at relativistic energies

$$\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - \beta \cdot \cos \theta_{\gamma}^{1 \, ab}}{\sqrt{1 - \beta^2}}$$

D

re.

210

1

CAN IN A

HECTOR team

sp

Ð

1-1-1

1 3:

Summary

