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Nuclear Radii

Clinton Davisson & Lester Germer (1925)

Luis de Broglie (1924): matter particles such as electrons have wave-like properties

Scattered electrons form diffraction pattern 
characteristic of  waves

Ψ ≈ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 � 𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐
2𝜋𝜋
𝜆𝜆
� 𝑥𝑥

Wavelength found from Planck’s constant 
and momentum:

𝜆𝜆 =
ℎ

𝑚𝑚 � 𝑣𝑣

ħ = 6.58·10-22 [MeV s]

𝜆𝜆 =
ℎ
𝑝𝑝

=
ℎ � 𝑐𝑐

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 + 2𝑚𝑚𝑜𝑜𝑐𝑐2
=

1239.84 𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓
𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 + 2𝑚𝑚0𝑐𝑐2

m0 = 0.511 [MeV]

Electrons at keV energies:
“interfere” with Angstrom (~10-10 m) scale atomic lattice structure

Si-detector with slit cover
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Double slit electron diffraction 

Interference minima when path length from holes differs by 
half wavelength:

𝑑𝑑 � 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜆𝜆 2
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Electron scattering on nuclei

How do we measure nuclear radii?

Use electrons as probe → point like particles, experience only electromagnetic interaction and not strong (nuclear) force, 
probe the entire nuclear volume.

What energy do we need?
Hint: consider required de Broglie wavelength

𝜆𝜆 =
ℎ � 𝑐𝑐

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 + 2𝑚𝑚𝑜𝑜𝑐𝑐2
=

1239.84 𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓
𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 + 2𝑚𝑚0𝑐𝑐2

λ = 5 [fm] for Ekin ~ 250 [MeV] 

Study angular distribution of scattered electrons

→ observe diffraction effects
→ analog with optics

𝑑𝑑𝜎𝜎
𝑑𝑑Ω

=
0.13 � 𝑍𝑍
𝐸𝐸2

�
1

𝑠𝑠𝑠𝑠𝑠𝑠4 ⁄𝜃𝜃 2
� 1 − 𝛽𝛽2 � 𝑠𝑠𝑠𝑠𝑠𝑠2 ⁄𝜃𝜃 2

The cross section describes the 
scattering on a point-like particle:

The momentum transfer is given by:

𝑞𝑞 = 2
𝑝𝑝
ℏ
� 𝑠𝑠𝑠𝑠𝑠𝑠 ⁄𝜃𝜃 2 = 2

𝐸𝐸
ℏ𝑐𝑐

� 𝑠𝑠𝑠𝑠𝑠𝑠 ⁄𝜃𝜃 2

𝑞𝑞 =
840𝑀𝑀𝑀𝑀𝑀𝑀

197𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓
� 𝑠𝑠𝑠𝑠𝑠𝑠 ⁄52 2 = 1.8 𝑓𝑓𝑓𝑓−1

e- scattering on 12C
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Mott scattering

Mott scattering for relativistic projectiles with spin (no recoil effect)

𝑑𝑑𝜎𝜎
𝑑𝑑Ω 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=
𝑑𝑑𝜎𝜎
𝑑𝑑Ω 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
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𝑑𝑑𝑑𝑑
𝑑𝑑Ω 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� 𝑐𝑐𝑐𝑐𝑐𝑐2
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for β = v/c → 1

dσ
/ d

(c
os

θ)

Central collision (θ = 1800, ℓ = 0) of an electron (s = ½)

Electron spin has to perform a spin-flip
→ backward scattering heavily suppressed

Nevill F. Mott
1905-1996



Hans-Jürgen Wollersheim - 2022

Electron scattering on nuclei

𝑑𝑑𝜎𝜎
𝑑𝑑Ω

=
𝑑𝑑𝜎𝜎
𝑑𝑑Ω 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

� 𝐹𝐹 𝑞𝑞2 2

Experimental cross section:

F(q2) is the form factor, which is the Fourier transform of the charge distribution

The form factor of a homogenously charged sphere:

𝐹𝐹 𝑞𝑞2 =
3
𝑞𝑞𝑞𝑞 3 � 𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞 � 𝑐𝑐𝑐𝑐𝑐𝑐 𝑞𝑞𝑞𝑞

 Comparison with experimental cross section on 12C

q·R = 4.5    → R = 2.5 [fm] for q = 1.8 [fm-1]
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Isotope effect of the nuclear radius

scattering angle

From the position of the cross section minima 
for 48Ca and 40Ca it is obvious that the nuclear 
radius R increases with mass number A.
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Charge distribution
experimental charge distributions           

16O 40Ca 48Ca

90Zr 132Sn 208Pb

Fermi distribution:

𝜌𝜌 𝑟𝑟 =
𝜌𝜌0

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟 − 𝑐𝑐
𝑎𝑎

ρ0 ≈ 0.17 nucleons / fm3

t = 2.4 fm

with c ≈ 1.07·A1/3 fm, a ≈ 0.54 fm

 Root mean square radius:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟2 = 𝑟𝑟0 � 𝐴𝐴 ⁄1 3 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑟𝑟0 = 0.94 𝑓𝑓𝑓𝑓

 Equivalent radius of a sphere:

𝑅𝑅2 = ⁄5 3 � 𝑟𝑟2 → 𝑅𝑅 ≈ 1.21 � 𝐴𝐴 ⁄1 3
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Conclusion of nuclear radius measurements

1. The central density, is (roughly) constant, almost independent of atomic number, and has a value about 0.17 fm-3. 
This is very close to the density of nuclear matter in the infinite radius approximation,

𝜌𝜌0 = �3 4𝜋𝜋𝑟𝑟03

2. The “skin depth”, is (roughly) constant as well, almost independent of atomic number, with a value of about        
t =2.4 fm typically. The skin depth is usually defined as the difference in radii of the nuclear densities at 90% 
and 10% of maximum value.

3. Scattering measurements suggest a best fit to the radius of nuclei:

RN = r0·A1/3 r0 ≈ 1.22 [fm]  1.2 → 1.25 is also common

4. A convenient parametric form of the nuclear density was proposed by Woods and Saxon

𝜌𝜌𝑁𝑁 𝑟𝑟 =
𝜌𝜌0

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟 − 𝑐𝑐𝑁𝑁
𝑎𝑎

with t = a·4·ln3        a = 0.54 fm
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