Outline: Nuclear radius

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. de Broglie wavelength
- 2. double slit experiment
- 3. electron scattering
- 4. Mott scattering
- 5. charge distribution

Nuclear Radii

Clinton Davisson & Lester Germer (1925)

Scattered electrons form diffraction pattern characteristic of waves

$$\Psi \approx \cos(k \cdot x) = \cos\left(\frac{2\pi}{\lambda} \cdot x\right)$$

Wavelength found from Planck's constant and momentum:

 $\lambda = \frac{h}{m \cdot v}$

Luis de Broglie (1924): matter particles such as electrons have wave-like properties $\lambda = \frac{h}{p} = \frac{h \cdot c}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_oc^2)}} = \frac{1239.84[MeV fm]}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}}$ Electrons at **keV** energies: "interfere" with Angstrom (~10⁻¹⁰ m) scale atomic lattice structure

 $m_0 = 0.511 [MeV]$

 $\hbar = 6.58 \cdot 10^{-22} \, [\text{MeV s}]$

F S 1

Double slit electron diffraction

Interference minima when path length from holes differs by half wavelength:

$$d \cdot \sin(\theta_{\min}) = \frac{\lambda}{2}$$

Electron scattering on nuclei

How do we measure nuclear radii?

Use electrons as probe \rightarrow point like particles, experience only electromagnetic interaction and not strong (nuclear) force, probe the entire nuclear volume.

What energy do we need?

Hint: consider required de Broglie wavelength

 $\lambda = \frac{h \cdot c}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}} = \frac{1239.84[MeV \, fm]}{\sqrt{E_{kin} \cdot (E_{kin} + 2m_0c^2)}} \qquad \lambda = 5 \, \text{[fm] for } E_{kin} \sim 250 \, \text{[MeV]}$

Mott scattering

Mott scattering for relativistic projectiles with spin (no recoil effect)

Nevill F. Mott 1905-1996

Central collision ($\theta = 180^{\circ}$, $\ell = 0$) of an electron (s = 1/2) S P_i longitudinal polarized P_f S

Electron spin has to perform a spin-flip

 \rightarrow backward scattering heavily suppressed

Electron scattering on nuclei

Experimental cross section:

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |F(q^2)|^2$$

 $F(q^2)$ is the form factor, which is the Fourier transform of the charge distribution

The form factor of a homogenously charged sphere:

 $F(q^2) = \frac{3}{(qR)^3} \cdot \{sin(qR) - qR \cdot cos(qR)\}$

♦ Comparison with experimental cross section on ^{12}C

 $q \cdot R = 4.5 \longrightarrow R = 2.5 \text{ [fm] for } q = 1.8 \text{ [fm}^{-1}\text{]}$

From the position of the cross section minima for 48 Ca and 40 Ca it is obvious that the nuclear radius **R** increases with mass number **A**.

Charge distribution

Fermi distribution:

$$\rho(r) = \frac{\rho_0}{1 + exp\left(\frac{r-c}{a}\right)}$$

with $c\approx 1.07{\cdot}\,A^{1/3}$ fm, $a\approx 0.54$ fm

- ✤ Root mean square radius: $r_{rms} = \sqrt{\langle r^2 \rangle} = r_0 \cdot A^{1/3} \quad with r_0 = 0.94 \ fm$
- Equivalent radius of a sphere:

 $R^2 = 5/3 \cdot \langle r^2 \rangle \rightarrow R \approx 1.21 \cdot A^{1/3}$

Conclusion of nuclear radius measurements

1. The central density, is (roughly) constant, almost independent of atomic number, and has a value about 0.17 fm⁻³. This is very close to the density of nuclear matter in the infinite radius approximation,

 $\rho_0 = \frac{3}{4\pi r_0^3}$

2. The "skin depth", is (roughly) constant as well, almost independent of atomic number, with a value of about t = 2.4 fm typically. The skin depth is usually defined as the difference in radii of the nuclear densities at 90% and 10% of maximum value.

3. Scattering measurements suggest a best fit to the radius of nuclei:

 $\mathbf{R}_{\mathbf{N}} = \mathbf{r}_{0} \cdot \mathbf{A}^{1/3}$ $\mathbf{r}_{0} \approx 1.22 \text{ [fm]}$ $1.2 \rightarrow 1.25 \text{ is also common}$

4. A convenient parametric form of the nuclear density was proposed by Woods and Saxon

$$\rho_N(r) = \frac{\rho_0}{1 + exp\left(\frac{r - c_N}{a}\right)}$$

with $t = a \cdot 4 \cdot \ln 3 \implies a = 0.54 \text{ fm}$