Outline: Coulomb excitation

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. particle detection
- 2. electric fields of multipoles
- 3. particle γ -ray coincidence measurement
- 4. Doppler shift correction
- 5. Conversion electrons
- 6. reorientation effect
- 7. octupole deformed nuclei

Coulomb excitation

Nuclear excitation by electromagnetic field acting between nuclei.

H.J. Wollersheim et al., Phys. Lett 48B (1974) 323

Coulomb excitation particle detection

Nuclear excitation by electromagnetic field acting between nuclei.

is a direct measure of the E2 matrix elements

H.J. Wollersheim et al., Phys. Lett 48B (1974) 323

Coulomb excitation Sommerfeld parameter

⁴He (**Z=2**) projectiles behave like waves quantum mechanical analysis is needed

Classical Coulomb trajectories

Safe bombarding energy pure electromagnetic interaction

Pure Coulomb excitation requires a much larger distance between the nuclei

→ ´safe bombarding energy´requirement

Nuclear interaction radius:

$$R_{int} \cong C_p + C_t + 3fm$$

 C_P, C_T half-density radii

$$R_{int} = C_p + C_t + 4.49 - \frac{C_p + C_t}{6.35}$$

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Safe bombarding energy pure electromagnetic interaction

Nuclear interaction radius: $R_{int} \cong C_p + C_t + 3fm$ C_{P}, C_{T} half-density radii

$$R_{int} = C_p + C_t + 4.49 - \frac{C_p + C_t}{6.35}$$

Safe bombarding energy pure electromagnetic interaction

→ choose adequate beam energy E_{lab} (D > D_{min} for all θ_{cm})

Multipole Expansion of the electric field

In general the electric potential due to an arbitrary charge distribution is

$$U(\vec{r}) = \iiint \frac{\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$

expansion

$$\frac{1}{|r-r'|} = \sum_{\ell=0}^{\infty} \frac{r'^{\ell}}{r^{\ell+1}} \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\vartheta,\varphi) Y_{\ell m}^*(\vartheta',\varphi')$$

special case: electric monopole

$$\ell = m = 0 \qquad Y_{00}(\vartheta, \varphi) = Y_{00}(\vartheta', \varphi') = \frac{1}{\sqrt{4\pi}}$$
$$\frac{1}{|r - r'|} = \frac{1}{r}$$

 \rightarrow

In general the electric potential due to an arbitrary charge distribution is

$$U(\vec{r}) = \iiint \frac{\rho_p(\vec{r}')}{r} d\tau'$$

homogenous charge distribution

 $\rho_p\left(\vec{r'}\right) = \frac{3 \cdot Ze}{4\pi \cdot R_0^3}$

special case: electric monopole

$$U(\vec{r}) = \frac{3 \cdot Ze}{4\pi \cdot R_0^3} \frac{1}{r} \iiint r'^2 dr' \sin \vartheta' d\vartheta' d\varphi'$$

$$U(\vec{r}) = \frac{3 \cdot Ze}{4\pi \cdot R_0^3} \cdot \frac{1}{r} \cdot \frac{R_0^3}{3} \cdot 4\pi = \frac{Ze}{r}$$

In general the electric potential due to an arbitrary charge distribution is

$$\begin{split} U(\vec{r}) &= \iiint \frac{\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau' \\ \frac{1}{|r - r'|} &= \begin{cases} 1/r & for & r > r' \\ 1/r' & for & r < r' \end{cases} \\ U(\vec{r}) &= 4\pi \cdot \frac{3 \cdot Ze}{4\pi \cdot R_0^3} \cdot \left[\int_0^r \frac{1}{r} \cdot r'^2 dr' + \int_r^{R_0} \frac{1}{r'} \cdot r'^2 dr' \right] \\ U(\vec{r}) &= \frac{3 \cdot Ze}{R_0^3} \cdot \left[\frac{r^2}{3} + \frac{R_0^2}{2} - \frac{r^2}{2} \right] \end{split}$$

special case: electric monopole

$$U(\vec{r}) = \frac{Ze}{2R_0} \cdot \left[3 - \left(\frac{r}{R_0}\right)^2\right]$$

In general the electric potential due to an arbitrary charge distribution is

$$U(\vec{r}) = \iiint \frac{\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$

expansion

$$\frac{1}{|r-r'|} = \sum_{\ell=0}^{\infty} \frac{r'^{\ell}}{r^{\ell+1}} \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\vartheta,\varphi) Y_{\ell m}^*(\vartheta',\varphi')$$

multipole moments

$$M^{*}(\ell, m) = \iiint \rho_{p}(r') \cdot r'^{\ell} \cdot Y^{*}_{\ell m}(\vartheta', \varphi') d\tau'$$

$$M^{*}(\ell = 2, m) = \frac{3 \cdot Ze \cdot R_{0}^{2}}{4\pi} \cdot \beta_{2}$$

$$B(E\ell = 2; I_{i} \rightarrow I_{f}) = \sum_{M_{f}m} \langle I_{f}M_{f}K_{f}|M(\ell = 2, m)|I_{i}M_{i}K_{i}\rangle^{2}$$

$$B(E\ell = 2; I_{i} \rightarrow I_{f}) = \frac{1}{2I_{i} + 1} |\langle I_{f}||M(\ell = 2)||I_{i}\rangle|^{2}$$

special case: electric quadrupole moment

reduced transition probability B(E2)-value:

Electric fields of multipoles deformation parameters

$$R(\vartheta',\varphi') = R_0 \cdot \{1 + \beta_2 Y_{20}(\vartheta',\varphi')\}$$

multipole moments

$$M^*(\ell,m) = \iiint \rho_p(r') \cdot r'^\ell \cdot Y^*_{\ell m}(\vartheta',\varphi') d\tau'$$

special case: electric quadrupole matrix element ($\ell = 2, m = 0$)

$$\rho_p\left(\vec{r'}\right) = \frac{3 \cdot Ze}{4\pi \cdot R_0^3}$$

$$M^{*}(2,0) = \frac{3 \cdot Ze}{4\pi \cdot R_{0}^{3}} \iiint r'^{2} \cdot Y_{20}^{*}(\vartheta',\varphi') \cdot r'^{2} dr' \sin\vartheta' d\vartheta' d\varphi'$$

 $M^*(2,0) = \frac{3 \cdot Ze}{4\pi \cdot R_0^3} \cdot \frac{R_0^5}{5} \iint \frac{1}{5} (1 + \beta_2 Y_{20})^5 \cdot Y_{20}^* \cdot \sin\vartheta' d\vartheta' d\varphi'$

$$M^{*}(2,0) \cong \frac{3 \cdot Ze \cdot R_{0}^{2}}{4\pi} \iint \frac{1}{5} (1 + 5 \cdot \beta_{2} Y_{20}) \cdot Y_{20}^{*} \cdot d\Omega'$$

$$M^*(2,0) \cong \frac{3 \cdot Ze \cdot R_0^2}{4\pi} \cdot \beta_2$$

Electric fields of multipoles Weisskopf estimate

multipole moments

$$\langle f \| M(E\ell) \| i \rangle = \iiint \psi_f M(E\ell) \psi_i d\tau$$

approximation:

if we take the radial parts of Ψ_i and Ψ_f to be constant for r<R (the nuclear radius) and to be =0 for r>R then the radial part of the transition probability is of the form:

$$\frac{\int_0^R r^\ell r^2 dr}{\int_0^R r^2 dr} = \frac{\frac{1}{\ell+3}R^{\ell+3}}{\frac{1}{3}R^3} = \frac{3}{\ell+3}R^\ell$$

For a transition from an excited state I_i to the ground state I_{gs} one finds in the electrical (E ℓ) case

$$B(\mathcal{E}\ell; I_i \to I_{gs}) = \frac{1.2^{2\ell}}{4\pi} \cdot \left(\frac{3}{\ell+3}\right)^2 \cdot A^{2\ell/3} \quad e^2 (fm)^{2\ell}$$

$$B(E1; I_i \to I_{gs}) = 6.446 \cdot 10^{-4} \cdot A^{2/3} e^2 b$$

$$B(E2; I_i \to I_{gs}) = 5.940 \cdot 10^{-6} \cdot A^{4/3} e^2 b^2$$

$$B(E3; I_i \to I_{gs}) = 5.940 \cdot 10^{-8} \cdot A^2 e^2 b^3$$

$$B(E4; I_i \to I_{gs}) = 6.285 \cdot 10^{-10} \cdot A^{8/3} e^2 b^4$$

special case: electric quadrupole potential

In general the electric potential due to an arbitrary charge distribution is

$$U(\vec{r}) = \iiint \frac{\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$

expansion

$$\frac{1}{|r-r'|} = \sum_{\ell=0}^{\infty} \frac{r'^{\ell}}{r^{\ell+1}} \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\vartheta,\varphi) Y_{\ell m}^*(\vartheta',\varphi')$$

multipole moments

$$M^{*}(\ell,m) = \iiint \rho_{p}(r') \cdot r'^{\ell} \cdot Y^{*}_{\ell m}(\vartheta',\varphi')d\tau'$$
$$U(\vec{r}) = \sum_{m=-2}^{m=2} \frac{4\pi}{5} \cdot \frac{1}{r^{3}} \cdot Y_{\ell=2,m}(\vartheta,\varphi) \cdot M^{*}(\ell=2,m)$$

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Monopole, dipole, quadrupole, ...

Particle γ -ray coincidence measurement

Coulomb excitation particle – γ -ray coincidence measurement

Coulomb excitation particle – γ -ray coincidence measurement

G S I

Coulomb excitation particle – γ -ray coincidence measurement

Kinematics

Coulomb excitation at IUAC

$^{58}\text{Ni} \rightarrow ^{122}\text{Sn}$ at 175 MeV

 $E_{safe} = 202 \text{ MeV}$

beam intensity = 0.5 pnA target thickness = 0.5 mg/cm² \rightarrow luminosity = 8.10²⁷ s⁻¹cm⁻²

cross section ~ 70 mb event rate = 560 s^{-1}

 γ -efficiency = 0.005 **p** γ -**rate (Sn) = 3/s**

Clover Ge detector

R. Kumar et al., Phys. Rev. C81, 024306 (2010)

M. Saxena et al., Phys. Rev. C90, 024316 (2014)

Coulomb excitation at IUAC

500

400

200 COUNTS / keV

 $^{58}\text{Ni} \rightarrow ^{122}\text{Sn}$ at 175 MeV

1200 ENERGY keV

1400

1600

Clover Ge detector

R. Kumar et al., Phys. Rev. C81, 024306 (2010)

M. Saxena et al., Phys. Rev. C90, 024316 (2014)

Annular gas-filled parallel-plate avalanche counter (PPAC)

A. Jhingan detector laboratory at IUAC

Doppler shift correction ⁵⁸Ni + ¹²²Sn at 175 MeV

delay line: inner – outer contact $\approx \tan \vartheta$ $tan \vartheta = \frac{tan 45^{0} - tan 15^{0}}{ch_{2} - ch_{1}} \cdot (ch - ch_{1}) + tan 15^{0}$ φ -segmentation : 36⁰, 72⁰, 108⁰, etc ⁵⁸Ni **projectile measured with PPAC** (¹²²Sn <u>target excitation</u>) index 1 = projectile (⁵⁸Ni) index 2 = target nucleus (¹²²Sn) $v_{cm} = 0.04634 \cdot (1 + A_{2}/A_{1})^{-1} \sqrt{E_{lab}/A_{1}}$ (= 0.02594)

$$\begin{aligned} \theta_{cm} &= \vartheta_1 + \arcsin\left(\frac{A_1}{A_2}\sin\vartheta_1\right) \\ \vartheta_2 &= 0.5 \cdot (180^0 - \theta_{cm}) \\ v_2 &= 2 \cdot v_{cm} \cdot \cos\vartheta_2 \\ \cos\vartheta_{\gamma 2} &= \cos\vartheta_{\gamma} \cdot \cos\vartheta_2 - \sin\vartheta_{\gamma} \cdot \sin\vartheta_2 \cdot \cos(\varphi_{\gamma} - \varphi_2) \\ \cos(\varphi_{\gamma} - \varphi_1) &= \cos\varphi_{\gamma} \cdot \cos\varphi_1 + \sin\varphi_{\gamma} \cdot \sin\varphi_1 \end{aligned}$$

$$\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - v_2 \cdot \cos \theta_{\gamma 2}}{\sqrt{1 - v_2^2}}$$

D. Schwalm et al. Nucl. Phys. A192 (1972), 449

Doppler shift correction ⁵⁸Ni + ¹²²Sn at 175 MeV

R. Kumar, A. Jhingan @ IUAC

Experimental set-up

Particle-gamma coincidence spectroscopy

Particle-gamma coincidence spectroscopy

Coulomb excitation:

$$\sigma_{E2}(2^{+})[b] = 4.819 \cdot (1 + A_1/A_2)^{-2} \cdot \frac{A_1}{Z_2^2} \cdot (E_{MeV} - \Delta E'_{MeV}) \cdot B(E2, 0^{+} \to 2^{+})_{e^2b^2} \cdot f_{E2}(\xi)$$

$$\xi = \frac{Z_1 \cdot Z_2 \cdot A_1^{1/2} \cdot \Delta E'_{MeV}}{12.65 \cdot (E_{MeV} - 0.5 \cdot \Delta E'_{MeV})^{3/2}} \cdot \left(1 + \frac{5}{32} \left(\frac{\Delta E'}{E}\right)^2 + \cdots\right)$$

K. Alder et al., RMP 28 (56) 432

Particle-gamma coincidence spectroscopy

Particle-gamma angular correlation

Conversion electrons

Coulomb excitation results of semi-magic Sn isotopes

Coulomb excitation results of semi-magic Sn isotopes

Coulomb excitation team

Vivek Mishra, Pieter Doornenbal, Mansi Saxena, Chhavi Joshi, Sunil Prajapati, Rakesh Kumar, Paer-Anders Soederstroem, Mohit Kumar, Sunil Dutt, Akhil Jhingan, Aakashrup Banerjee, Hans Jürgen Wollersheim.

Multiple (multi-step) Coulomb excitation

γ -ray decay after multiple Coulomb excitation

The reorientation effect

Shape coexistence in ⁷⁴Kr

Doppler shift correction ²⁰⁸Pb + ¹⁶⁴Dy at 978 MeV

Doppler shift correction ²⁰⁸Pb + ¹⁶⁴Dy at 978 MeV

1.0 1.0 0.8 0.8 0.6 0.4 Y I--I-2 (θcm)/ Y 6--4 (θcm) 0.2 0.2 0.1 16-14 0.1 0.1 0.3 0.0 0.2 18--16 0.2 0.1 0.1 0.1/0.2 ²⁰⁸Pb÷¹⁶⁴Dy 4.7 MeV/u 20-18 Dy-events 0.0 0.1 Pb-events 90* 120° 150° 60° θ_{cm}

Doppler shift correction ²⁰⁸Pb + ¹⁶⁴Dy at 978 MeV

B(E2)-values in good agreement with the rigid rotor model

Deformed nuclei collective rotation and nucleon pairing

$$R(\theta,\phi) = R_0 \cdot \left[1 + \beta \cdot Y_{20}(\theta,\phi)\right] \quad \beta = \frac{4}{3} \sqrt{\frac{\pi}{5}} \frac{\Delta R}{\bar{R}} \quad \Delta R = a-b \quad \bar{R} = \frac{a+b}{2}$$

 $E_{\gamma} = E_I - E_{I-2} = \frac{\hbar^2}{2\pi} (4I - 2)$

analysis with GOSIA code

W. Spreng et al., Phys. Rev. Lett. 51 (1983), 1522

GOSIA code

Coulomb excitation angular momentum transfer

$$J_{20}(\theta_{cm}) = \sin^2 \frac{\theta_{cm}}{2} + \tan^2 \frac{\theta_{cm}}{2} \left[1 - \frac{\pi - \theta_{cm}}{2} \tan \frac{\theta_{cm}}{2} \right]$$
$$J_{20}(\theta_{cm}) \cong \frac{2}{3} (1 - \cos \theta_{cm})$$

Coulomb excitation energy transfer

Shape parameterization

$$R(\theta,\phi) = R_0 \cdot \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \cdot Y_{\lambda\mu}(\theta,\phi)\right]$$

axially symmetric quadrupole

axially symmetric octupole

Octupole collectivity

Experimental set-up

 226 RaBr₂ (400 µg/cm²) on C-backing (50 µg/cm²) and covered by Be (40 µg/cm²)

γ-ray spectrum of ²²⁶Ra

$$208 \text{Pb} \longrightarrow 226 \text{Ra}$$
$$E_{\text{lab}} = 4.7 \text{ AMeV}$$
$$15^{0} \le \theta_{\text{lab}} \le 45^{0}$$
$$0^{0} \le \phi_{\text{lab}} \le 360^{0}$$

Signature of an octupole deformed nucleus

Electric transition quadrupole moments in ²²⁶Ra

O negative parity statespositive parity states

rigid rotor model:

$$\langle I-2 \| M(E2) \| I \rangle = \sqrt{\frac{15}{32 \cdot \pi}} \cdot \sqrt{\frac{I \cdot (I-1)}{2I-1}} \cdot Q_2 \cdot e$$

liquid drop:

$$Q_2 = \frac{3 \cdot Z \cdot R_0^2}{\sqrt{5 \cdot \pi}} \cdot \left(\beta_2 + 0.360\beta_2^2 + 0.336\beta_3^2 + 0.328\beta_4^2 + 0.967\beta_2\beta_4\right) \left[fm^2\right]$$

$$Q_2(exp) = 750 \text{ fm}^2$$
 $\beta_2 = 0.21$
 $Q_2(theo) = 680 \text{ fm}^2$

H.J. Wollersheim et al.; Nucl. Phys. A556 (1993) 261

W. Nazarewicz et al.; Nucl. Phys. A467 (1987) 437

Static quadrupole moments in ²²⁶Ra

negative parity statespositive parity states

rigid rotor model:

$$\frac{Q_s(I)}{Q_0} = \sqrt{\frac{I \cdot (2I-1)}{(I+1) \cdot (2I+1) \cdot (2I+3)}} \cdot \frac{\langle I \| M(E2) \| I \rangle}{\langle 2_1 \| M(E2) \| 0_1 \rangle}$$

rigid triaxial rotor model:

$$\frac{Q_s(2_1)}{Q_0} = -\frac{6 \cdot \cos(3\gamma)}{7 \cdot \sqrt{9 - 8 \cdot \sin^2(3\gamma)}}$$

H.J. Wollersheim et al.; Nucl. Phys. A556 (1993) 261

Davydov and Filippov, Nucl. Phys. 8, 237 (1958)

Electric transition octupole moments in ²²⁶Ra

H.J. Wollersheim et al.; Nucl. Phys. A556 (1993) 261

W. Nazarewicz et al.; Nucl. Phys. A467 (1987) 437

Intrinsic electric dipole moments in ²²⁶Ra

liquid-drop contribution:

$$Q_1^{LD} = C_{LD} \cdot A \cdot Z \cdot \left(\beta_2 \beta_3 + 1.458 \cdot \beta_3 \beta_4\right)$$

with $C_{LD} = 5.2 \cdot 10^{-4} \, [fm]$

rigid rotor model:

$$\langle I-1 \| M(E1) \| I \rangle = -\sqrt{\frac{3}{4\pi}} \cdot \sqrt{I} \cdot Q_1 \cdot e$$

H.J. Wollersheim et al.; Nucl. Phys. A556 (1993) 261 G. Leander et al.; Nucl. Phys. A453 (1986) 58

Coulomb excitation of ²²⁶Ra

H.J. Wollersheim et al.; Nucl. Phys. A556 (1993) 261

Evolution of nuclear structure as a function of nucleon number

