Outline: Relativistic Coulomb excitation

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. production, separation, identification of RIBs
- 2. scattering experiments at relativistic energies
- 3. relativistic Coulomb excitation
- 4. Doppler shift correction
- 5. experimental results with **RIB**s

Physics with exotic nuclei

NUclear STructure, Astrophysics and Reactions

High-energy Coulomb excitation

SIS-18

UNILAC

GSI

Experimental evidence for magic numbers close to stability

Nuclei with magic numbers of neutrons/protons

high energy of 2_1^+ state

low B(E2; $2_1^+ \rightarrow 0^+$) values

transition probability measured in single particle units (spu)

If we move away from stability?

Production, Separation, Identification

Rutherford scattering only if distance of closest approach D_{min} is large compared to nuclear radii + surfaces:

 $D_{\min} > C_P + C_T + 5 fm$ C_P, C_T half-density radii

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_P e^2}{hc}\right)^2 \cdot \frac{\pi}{e^2 b^{2\lambda-2}} \cdot B(\pi\lambda; 0 \to \lambda) \cdot \begin{cases} (\lambda-1)^{-1} & \text{for } \lambda \ge 2\\ 2\ln(b_a/b) & \text{for } \lambda = 1 \end{cases}$$

 $E^* = 4.086 \, MeV$ $B(E2; 0 \rightarrow 2^+) = 9 \, Wu$

 $E^* = 2.615 MeV$ $B(E3; 0 \rightarrow 3^-) = 34 Wu$

Bremsstrahlung

slowing down of a moving point-charge

electric field lines (v/c=0.99)

Atomic background radiation

➢ Radiative electron capture (REC) capture of target electrons into bound states of the projectile: $\sigma \sim Z_p^2 \cdot Z_t$ ➢ Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile: $\sigma \sim Z_p^2 \cdot Z_t$

Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target: $\sigma \sim Z_p^2 \cdot Z_t^2$

Bremsstrahlung: slowing down of a moving point-charge

Suppression of atomic background radiation Pb & Sn absorbers

Hans-Jürgen Wollersheim - 2022

GSĬ

relativistic Coulomb excitation

Coulomb excitation: $\mathcal{G}_1^{lab} < \mathcal{G}_{grazing}$

$$\mathcal{G}_{1}^{1ab} = \frac{2 \cdot Z_{1} \cdot Z_{2} \cdot e^{2}}{m_{0} \cdot c^{2} \cdot \gamma \cdot \beta^{2} \cdot b} = \frac{2.88 \cdot Z_{1} \cdot Z_{2} \cdot [931.5 + (T / A_{1})]}{A_{1} \cdot [(T / A_{1})^{2} + 1863 \cdot (T / A_{1})]} \cdot \frac{1}{b} [rad]$$

$$b \cong R_{\text{int}} = C_1 + C_2 + 4.49 - \frac{C_1 + C_2}{6.35} [fm]$$

GSI

GSI

re

(deedic)

Au, Be target

PreSPEC target chamber variable target position (13cm, 23cm)

Pavel Golubev

Additional y-ray background radiation

³⁷Ca beam at 196 MeV/u

Coulomb excitation: A/Q - 37 Ca all Ca detected in **AE-E**

1‰ interaction target most γ-rays from CATE or LYCCA

time spectrum

Fragmentation:

A/Q - ³⁷Ca K detected (mainly ³⁶K)

Coulomb excitation of exotic nuclei

Electromagnetic interaction acting between two colliding nuclei.

- Inelastic scattering: kinetic energy is transferred into nuclear excitation energy
- Monopole-multipole interaction
- > Target and projectile excitation possible

Excitation probability (or inelastic cross section) is a measure of the collectivity of the nuclear state of interest

Safe bombarding energy requirement – basic concept

Rutherford scattering only if D_{min} is large compared to nuclear radii + surfaces:

 $D_{\min} > C_P + C_T + 5 fm$ C_P, C_T half-density radii

- choose adequate beam energy (D > D_{min} for all θ) low-energy Coulomb excitation
- → limit scattering angle, i.e. select impact parameter b > D_{min} high-energy Coulomb excitation

High-energy Coulomb excitation – straight line approximation

> distance of closest approach: $D(\theta_{cm}) = \frac{a}{\gamma} \cdot \left[1 + \sin^{-1}\left(\frac{\theta_{cm}}{2}\right)\right]$

For nonrelativistic projectiles:

$$2 \cdot \sin\left(\frac{\theta_{1/4}}{2}\right) = \frac{a}{R_{\text{int}} - a} \quad \text{with} \quad a = \frac{Z_P Z_T e^2}{m_0 c^2 \beta^2 \gamma}$$

For relativistic projectiles ($\theta_{cm} \approx \theta_{lab}$):

$$\mathcal{G}_{1/4} = \frac{2 \cdot Z_P Z_T e^2}{m_0 c^2 \beta^2 \gamma} \cdot \frac{1}{R_{\text{int}}}$$

Coulomb excitation: $\mathcal{G}_1^{lab} < \mathcal{G}_{1/4}$

High-energy Coulomb excitation – grazing angle

¹³⁶Xe on ²⁰⁸Pb at 700 MeV/u excitation of giant dipole resonance

 $R_{\rm int} = 15.0 \ fm \rightarrow \ \mathcal{P}_{1/4} = 5.7 \ mrad$

Protons Neutrons

A.Grünschloß et al., Phys. Rev. C60 051601 (1999)

Rutherford scattering only if distance of closest approach D_{min} is large compared to nuclear radii + surfaces:

 $D_{\min} > C_P + C_T + 5 fm$ C_P, C_T half-density radii

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_{P}e^{2}}{\hbar c}\right)^{2} \cdot \frac{\pi}{e^{2}b^{2\lambda-2}} \cdot B(\pi\lambda; 0 \to \lambda) \cdot \begin{cases} (\lambda-1)^{-1} & \text{for } \lambda \geq 2\\ 2\ln(b_{a}/b) & \text{for } \lambda = 1 \end{cases}$$

 $E^* = 4.086 \, MeV$ $B(E2; 0 \rightarrow 2^+) = 9 \, Wu$

 $E^* = 2.615 MeV$ $B(E3; 0 \rightarrow 3^-) = 34 Wu$

High-energy Coulomb excitation – M1 and E2 excitations, full analytical description

The scattering of a nucleus $_{Z_P}^{A_P} X_{N_P}$ on a target nucleus $_{Z_T}^{A_T} Y_{N_T}$

$$\sigma_{E\lambda} = \left(\frac{Z_1 e}{\hbar v}\right)^2 a^{-2\lambda+2} B(E\lambda, I_0 \to I_f) f_{E\lambda}(\xi)$$

$$\sigma_{M\lambda} = \left(\frac{Z_1 e}{\hbar c}\right)^2 a^{-2\lambda+2} B(M\lambda, I_0 \to I_f) f_{M\lambda}(\xi)$$

$$\frac{\sigma_{E\lambda}}{\sigma_{M\lambda}} \sim \left(\frac{c}{v}\right)^2; \quad v/c \sim 7\% \rightarrow \frac{\sigma_{E\lambda}}{\sigma_{M\lambda}} \sim 200$$

Conclusion:

- 1) The lower multipolarities are dominant
- 2) For a given multipole order, electric transitions are more likely than magnetic transitions

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

http://ie.lbl.gov/atomic/x2.pdf

Michael Reese

Doppler broadening and position resolution

Doppler broadening

slowing down in target:

 $\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}} = \frac{\beta - \cos \vartheta_{\gamma}}{\left(1 - \beta^2\right) \cdot \left(1 - \beta \cdot \cos \vartheta_{\gamma}\right)} \cdot \Delta \beta$

$$\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}} = \frac{\beta \cdot \sin \vartheta_{\gamma}}{1 - \beta \cdot \cos \vartheta_{\gamma}} \cdot \Delta \vartheta_{\gamma}$$

Segmented detectors

Advanced GAmma Tracking Array

John Strachan

Signals from 36 segments + core are measured as a function of time (γ-ray interaction point)

$$\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - \beta \cdot \cos \theta_{\gamma}^{1 \, ab}}{\sqrt{1 - \beta^2}}$$

First observation of a second excited 2⁺ *state* populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge-detectors.

shape symmetrycollective strength

$B(E2;2_2 \rightarrow 2_1) - 7 9 - 8\sin^2(3\gamma)$
$B(E2;2_1 \to 0) = \frac{1}{1+3-2\sin^2(3\gamma)}$
$1+\frac{\sqrt{9-8\sin^2(3\gamma)}}{\sqrt{9-8\sin^2(3\gamma)}}$
•
$1-\frac{3-2\sin^2(3\gamma)}{2}$
$B(E2;2_2 \to 0) \qquad \sqrt{9 - 8\sin^2(3\gamma)}$
$\overline{B(E2;2_1 \to 0)} = \frac{1}{1 + 3 - 2\sin^2(3\gamma)}$
$1+\frac{1}{\sqrt{9-8\sin^2(3\gamma)}}$
$E_2(2) = 3 + \sqrt{9 - 8\sin^2 3\gamma}$
$\frac{1}{E_1(2)} - \frac{1}{3 - \sqrt{9 - 8\sin^2 3\gamma}}$

T.R. Saito et al. Phys.Lett. B669 (2008), 19

 $20 \sin^2(3\gamma)$

re

(deedic)

Au, Be target

D

re

-

A CONTRACTOR A

HECTOR team

ap

1-1-1

13:

AGATA at PreSPEC

BILL

AGATA

preprocessor computer farm

digitiser

Z identification

220

200

ΔE_{Si} (LYCCA)

120

100

3500

4000

4500

5000

E_{Csl} (LYCCA)

Commissioning of LH₂ target

0.45 160 LH2 target used during the ⁵⁴Cr 0.44 14(test in may 2011 12(> 2 cm thickness 0.43 7 cm diameter 10(Beta 0.42 80 0.41 Beam of ⁵⁴Cr at 150MeV/u 60 0.4 40 0.39 20 0.38 [□] 49 0 50 51 52 53 54 55 56 **Target filled** No LH2 Mass with LH2 ⁵²Cr E_AngCr52_haut_py Entries 17453 200 Number of Entries 4⁺ → 2⁺ 1125 Mean 180 RMS 502.1 932 (15) 2+ **→**0+ Underflow 160 Overflow 2573 1436 (27) 140 Integral 1.745e+04 Counts (10 keV/bin) 120 100 80 60 40

20

0

ίΩ

500

1000

1500

2000

Masse identification for Cr isotopes

5500

2500

Ivan Kojouharov, Michael Reese, Namita Goel, Liliana Cortes, Frederic Ameil, Bogdan Szczepanczyk H.-J. W., Damian Ralet, Pushpendra Singh, Stephane Pietri, Tobias Habermann, Edana Merchan, Giulia Guastalla, Plamen Boutachkov, Adolf Brünl Ian Burrows, Jonathan Strachan, (Paul Morral), Jürgen Gerl, (Henning Schaffner, Magda Gorska)

Reactions with relativistic radioactive beams – R³B

Excitation energy E^* from kinematically complete measurement of all outgoing particles

$$E^* = \left(\sqrt{\sum_i m_i^2 + \sum_{i \neq j} m_i m_j \gamma_i \gamma_j \left(1 - \beta_i \beta_j \cos \vartheta_{ij} \right)} - m_{proj} \right) c^2 + E_{\gamma,sum}$$

Large Area Neutron Detector

Large Area Neutron Detector (2m x 2m x 1m)

- neutron energy $T_n \le 1 \text{ GeV}$
 - $\Delta T_{n}/T_{n} = 5.3\%$
 - efficiency ~1
 - passive Fe-converter

Invariant mass analysis

$$\begin{split} M_{proj}^{inv} &= m_{proj} + E^{*} \\ M_{proj}^{inv} &= \sqrt{\left\{\sum_{i}^{j} E_{i}\right\}^{2}} \\ \left(\sum_{i}^{j} E_{i}\right)^{2} &= \sum_{i}^{j} (\gamma_{i} m_{i})^{2} + \sum_{i \neq j}^{j} \gamma_{i} \gamma_{j} m_{i} m_{j} \\ \left(\sum_{i}^{j} \sum_{p_{i}}^{j}\right)^{2} &= \sum_{i}^{j} (\gamma_{i} \beta_{i} m_{i})^{2} + \sum_{i \neq j}^{j} \gamma_{i} \gamma_{j} \beta_{i} \beta_{j} m_{i} m_{j} \cos \theta_{ij} \\ M_{proj}^{inv} &= \sqrt{\sum_{i}^{j} m_{i}^{2} + \sum_{i \neq j}^{j} m_{i} m_{j} \gamma_{i} \gamma_{j} (1 - \beta_{i} \beta_{j} \cos \theta_{ij})} + E_{\gamma} \\ E^{*} &= \sqrt{\sum_{i}^{j} m_{i}^{2} + \sum_{i \neq j}^{j} m_{i} m_{j} \gamma_{i} \gamma_{j} (1 - \beta_{i} \beta_{j} \cos \theta_{ij})} - m_{proj} + E_{\gamma} \end{split}$$

GSİ

Momentum reconstruction: $(\hbar=c=1)$

four-momenta: $\hat{P} = (E, \vec{p})$

$$\begin{cases} p_x = p_0 \sin\theta \cos\phi \\ p_y = p_0 \sin\theta \sin\phi \\ p_z = p_0 \cos\theta \end{cases} \\ p_0 = m_0 \beta\gamma \end{cases}$$

 $\gamma^2(1-\beta^2)=1$

Dipole strength distribution of ⁶⁸Ni

O. Wieland et al.; Phys. Rev. Lett 102, 092502 (2009)

4

 $S \left[e^2 fm^2 / MeV \right]$

0

6

68

E1

D. Rossi et al.; Phys. Rev. Lett 111, 242503 (2013)

Slow down beams – new experimental perspectives

Slowed down beams – beam characteristics

Slowed down beams – experimental set-up

MCP \equiv micro channel plate

Slowed down beams - experimental set-up

TOF between MCP and DSSSD

Time resolution 200 ps for one of the 256 detector pixels

FAIR accelerator facility

