Outline: Nuclear isomers

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. nuclear isomers (shape-, spin-, K-traps)
- 2. In-flight separation of excited Radioactive Ion Beams
- 3. nuclear shell closure in ^{98}Cd and ^{130}Cd
- 4. T=1 isospin symmetry mirror nuclei

What is a nuclear isomer?

Nuclear Isomer – a long-lived excited nuclear state ($T_{1/2} > 1 \text{ ns}$)decays by emission of α , β , γ , p, fission, cluster

The first one discovered by O. Hahn in Berlin in 1921 – decay of ²³⁴Pa (70 s) von Weizsacker, A. Bohr & B. Mottelson

Three types of isomers

1. Shape isomers

H. Specht et al. Phys. Lett. B41 (1972) 43

• A well-known example:

GSI

Magnetic moments in ¹⁷⁸Hf

$$g(j) = \begin{cases} \frac{2 \cdot \ell \cdot g_{\ell} + g_{s}}{2 \cdot \ell + 1} & \text{for } j = \ell + 1/2 \\ \frac{2 \cdot (\ell + 1) \cdot g_{\ell} - g_{s}}{2 \cdot \ell + 1} & \text{for } j = \ell - 1/2 \end{cases} \text{ proton } g_{\ell} = 1 \quad g_{s} = 5.59 \\ \text{neutron } g_{\ell} = 0 \quad g_{s} = -3.83 \end{cases} \qquad 16^{+}$$

$$g(\mathbf{h}_{11/2}) = 1.42 \quad g(\mathbf{g}_{7/2}) = 0.49 \quad g(\mathbf{f}_{7/2}) = -0.55 \quad g(\mathbf{i}_{13/2}) = -0.29$$

$$g(j_{1} \times j_{2}; J) = \frac{1}{2} \cdot (g_{1} + g_{2}) + \frac{j_{1} \cdot (j_{1} + 1) - j_{2} \cdot (j_{2} + 1)}{2 \cdot J \cdot (J + 1)} \cdot (g_{1} - g_{2})$$

$$g(\mathbf{h}_{11/2} \times \mathbf{g}_{7/2}; 8^{-}) = 1.08 \quad g(\mathbf{f}_{7/2} \times \mathbf{i}_{13/2}) = -0.36$$

$$g(\mathbf{g}^{*} \times 8^{+}; 16^{+}) = 0.36 \quad \rightarrow \quad \mu = \mathbf{g} \cdot \mathbf{I} = 5.76 \text{ nm}$$

$$7.26 \pm 0.16 \text{ nm}$$

 $\pi: h_{11/2} g_{7/2} v: f_{7/2} i_{13/2}$

Helmer & Reich; Nucl. Phys. A114 (1968), 649

2636 keV

K-isomers: where to find them?

Deformed nuclei with axially-symmetric shape

High-K orbitals near the Fermi surface

π: 7/2[404], 9/2[514], 5/2[402]

V: 7/2[514], 9/2[624], 5/2[512], 7/2[633]

GSI

3. Spin isomers

⁹⁸48Cd₅₀

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

3. Spin isomers

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

Physics with exotic nuclei

Production of Radioactive Ion Beams

time-of-flight through the fragment separator FRS ~300 ns

Isomeric states can be investigated!

Longer lifetime for bare atoms

GSĬ

Experimental set-up for isomer decay gateway to nuclear structure

R. Grzywacz et al., Phys. Rev C55 ,1126 (1997)

Experimental set-up with passive target

implantation in Cu-plate

15 Cluster detectors with 105 Ge crystals $\varepsilon_{\gamma} = 11\%$ at 1.3 MeV, 20% at 550 keV, 35% at 100 keV

very high γ-ray efficiency
 high grapularity (prompt flash prob

high granularity (prompt flash problem)

S. Pietri et al., NIM B261 (2007), 1079

Limitations in isomeric spectroscopy

Identification of ¹³⁰₄₈Cd₈₂

Limitations in isomer spectroscopy

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

Decay spectroscopy probes shell closures

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

Decay spectroscopy probes shell closures

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

8⁺(g_{9/2})⁻² seniority isomers in ⁹⁸Cd and ¹³⁰Cd

two proton holes in the $g_{9/2}$ orbit

No dramatic shell quenching!

A. Blazhev et al., Phys. Rev. C69 (2004) 064304

 0^{+}

A. Jungclaus et al., Phys. Rev. Lett. 99 (2007), 132501

0+

The astrophysical r-process 'path'

Assumption of a N=82 shell quenching leads to a considerable improvement in the global abundance fit in r-process calculations !

Level scheme of ²¹⁰Pb

pairing energy) esidual interaction !

M. Rejmund Z.Phys. A359 (1997), 243

Level schemes of neutron-rich Pb-isotopes

T=1 isospin symmetry in pf-shell nuclei search for isospin breaking effects

decay of the excited 10⁺-state by proton emission and γ -radiation

GSÍ

Identification of ⁵⁴Ni

GSI

Active target SIlicon IMplantation detector and Beta Absorber

Spectroscopy of the doubly magic nucleus ¹⁰⁰Sn and its decay

Gamow-Teller Strength and Q_{EC} value in the β -decay of ^{100}Sn

Single particle energies for shell model orbitals in ¹⁰⁰Sn

• 100Sn is an ideal testing ground to investigate GT-strength:

pure GT spin-flip transition: $0^+ \Longrightarrow (\pi g_{9/2}^{-1} vg_{7/2}) 1^+$

 Almost the whole strength of the GT resonance is covered by the energy window of the β⁺-decay

Theoretical calculation of the distribution of the GT-strength:

97% of the whole strength is concentrated in a single state, which is accessible in the β^+ -decay

$$B_{GT}(ESM) = \frac{4\ell}{2\ell + 1} \cdot \left(1 - \frac{N_{\nu g_{7/2}}}{8}\right) \cdot N_{\pi g_{9/2}} = 17.78$$

with $\ell = 4 N_{\nu g7/2} = 0 N_{\pi g9/2} = 10$

Gamow-Teller strength and Q_{EC} value in the β -decay of ¹⁰⁰Sn

The **Gamow-Teller Strength B**_{GT} (only one final state populated) can be calculated from the half life $T_{1/2}$ and the Fermi Phasespace Integral $f(Z, E_0)$:

$$f(Z, E_0) \cdot T_{1/2} = \frac{2\pi^3 \hbar^7}{m_e{}^5 c^4 G_F{}^2} \cdot \frac{ln2}{g_v{}^2 \cdot |M_F|^2 + g_A{}^2 \cdot |M_{GT}|^2}$$
$$G_F/(\hbar c)^3 = 1.16637(1) \cdot 10^{-5} \text{ GeV}{}^2, \ g_A/g_V = 1.2695 \pm 0.0029$$

$$f(Z, E_0) \cdot T_{1/2} = \frac{6142.8s}{B_F + (g_A/g_V)^2 \cdot B_{GT}}$$

In the case of a pure Gamow-Teller decay the transition strength can be calculated in the following way:

$$B_{GT} = \frac{3811.5s}{f(Z, E_0) \cdot T_{1/2}} = 9.1^{+4.8}_{-2.3}$$

Fermi-integral with LOGFT program NNDC

