Outline: Nuclear shell structure exotic nuclei

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. shell structure of super-heavy nuclei (²⁵⁰Fm, ²⁵⁴No)
- 2. classical anomalies: ¹¹Be, ¹¹Li
- 3. monopole interaction of the tensor force: N=20, N=28
- 4. neutron-proton pairing in ⁹²Pd

New challenges in nuclear structure new magic numbers

GSI

New challenges in nuclear structure new magic numbers

Spectroscopy of transfermium nuclei (Z=100-103)

super-heavy elements

Nucleare shell structure

Where is the next shell closure ?

Nilsson-model

- deformed oscillator potential
- axially symmetry around the z-axis → nuclei can rotate

 $\omega_x = \omega_y \equiv \omega_\perp$

 $\omega_x \cdot \omega_y \cdot \omega_z = \omega_0^3$

Hamiltonian

$$H = -\frac{\hbar^2}{2 \cdot m} \cdot \Delta + \frac{m}{2} \cdot \left[\omega_{\perp}^2 \cdot (x^2 + y^2) + \omega_z^2 \cdot z^2\right] + C \cdot \vec{L} \cdot \vec{S} + D \cdot \vec{L}^2$$

deformation parameter $\boldsymbol{\delta}$

$$\omega_{\perp}^{2} = \omega_{0}^{2} \cdot \left(1 + \frac{2}{3} \cdot \delta\right) \qquad \omega_{z}^{2} = \omega_{0}^{2} \cdot \left(1 - \frac{4}{3} \cdot \delta\right)$$

$$\hbar^{2} \qquad m \qquad 0 \quad z = 0 \quad z = 0 \quad z = 0$$

$$H = -\frac{n^{-}}{2 \cdot m} \cdot \Delta + \frac{m}{2} \cdot \omega_{0}^{2} \cdot r^{2} + C \cdot \vec{L} \cdot \vec{S} + D \cdot \vec{L}^{2} - m \cdot \omega_{0}^{2} \cdot r^{2} \cdot \delta \cdot \frac{4}{3} \cdot \sqrt{\frac{5}{4 \cdot \pi}} \cdot Y_{20}(\theta, \phi)$$
shell model with H.O. potential
$$H_{def}$$

- separation of laboratory system and body-fixed (intrinsic) system
- K = projection of the single-particle angular momentum onto the symmetry axis
- Rotation perpendicular to the symmetry axis does not change the K-quantum number

Nilsson-model

- deformed oscillator potential
- axially symmetry around the z-axis → nuclei can rotate

Intruder

Orbitals are lifted or lowered, that orbitals from other shells with opposite parity are crossed

Kэ K₁ 10 8 $V=m/2^{*}\omega^{2}x_{i}^{2}$ 6 0∔ -8 -6 _4 -2 Ò Ż 4 Ġ 8 х

Orbital 1 is closer to the center of gravity than orbital 2.

The energy of orbital 1 is lowest.

(attention: negative sign in Hamiltonian)

Single particle orbitals

R. Chasman et al. Rev. Mod. Phys. 49 (1977), 833

Hans-Jürgen Wollersheim - 2022

GSİ

Stability of heavy elements – Nilsson energy levels

Level scheme of ²⁵³No (151 neutrons)

Level schemes in neutron-rich Pb isotopes

Pb205 1.53E+7 v	Pb206	РЬ207	Pb208	Pb209 3,253 h	Pb210 22.3 v	Pb211 36.1 m	Pb212 10.64 h	Pb213 10.2 m	Pb214 26.8 m	Pb215 36 s	<i>Pb216</i>	<i>Pb217</i>	<i>Pb218</i>
5/2-	0+	1/2-	0+	9/2+	0+	9/2+	0+	(9/2+)	0+	(5/2+)			
EC *	24.1	22.1	52.4	β-	β-,α	β-	β-	β-	β-	β-			

g_{9/2}

The magic numbers near stable nuclei

Maria Goeppert-Mayer (1906-1972) Hans Jensen (1907-1973)

magic numbers with constant shell closures are not so robust, as we thought.

Nuclear shell structure experimental hints for magic numbers

nuclei with magic numbers

neutron / proton: high energies for 2_1^+ states

small B(E2; $2_1^+ \rightarrow 0^+$) values

transition probabilities are measured in Weisskopf units (spu)

What happens far away from the valley of stability?

Extreme single-particle shell model

energies of shell closure:

$$BE\binom{17}{9}F_7 - BE\binom{16}{8}O_8 = E(0d_{5/2})$$

$$BE\binom{15}{7}N_8 - BE\binom{16}{8}O_8 = -E(0p_{1/2})$$

$$E(0d_{5/2}) - E(0p_{1/2}) = BE\binom{17}{9}F_8 + BE\binom{15}{7}N_8 - 2 \cdot BE\binom{16}{8}O_8$$

$$= -11.526 MeV$$

$$BE\binom{17}{8}O_9 - BE\binom{16}{8}O_8 = E(0d_{5/2})$$
$$BE\binom{15}{8}O_7 - BE\binom{16}{8}O_8 = -E(0p_{1/2})$$
$$E(0d_{5/2}) - E(0p_{1/2}) = BE\binom{17}{8}O_9 + BE\binom{15}{8}O_7 - 2 \cdot BE\binom{16}{8}O_8$$
$$= -11.519 \, MeV$$

good prediction of spin parity $\pi = (-1)^{\ell}$ magnetic moment

proton neutron

 $^{16}_{8}O_{8}$

Single-particle energies

Single-particle states observed in odd-A nuclei (especially one nucleon + doubly magic nucleus as ⁴He, ¹⁶O, ⁴⁰Ca) are characterized by the single-particle energies in the shell model picture.

Several anomalies were observed in shell structures of exotic nuclei: proton-rich or neutron-rich

The $2s_{1/2}$ orbital (parity +) and the $1p_{1/2}$ orbital (parity -) are inverted ?? (*parity inversion*)

G 5 1

The s component in the ground state is essential for creating a halo structure.

Schrödinger equation:

tion:
$$\left[-\frac{\hbar^2}{2\cdot\mu}\nabla^2 + V(r)\right]\Psi(r) = E\Psi(r)$$
 $\Psi(r) = u_{nl}(r)\cdot Y_{lm}(\vartheta,\varphi)$

$$\frac{d^2u}{dr^2} + \frac{2}{r}\frac{du}{dr} + \left[\frac{2\cdot\mu}{\hbar^2}\left(E - V(r)\right) - \frac{\ell\cdot(\ell+1)}{\underline{r^2}}\right]u(r)$$

centrifugal barrier ($\ell = 0$ for s-wave)

neutron-rich nuclei (¹¹Be, ¹¹Li)

- \rightarrow instable: flat nuclear potential
- \rightarrow the wave function is extended
- → for s-orbitals, the radial extension is not blocked by the centrifugal barrier (halo)

Halo nuclei

What can we expect at the neutron-dripline?

wave function outside of the potential

$$\kappa^{2} = \frac{2 \cdot \mu \cdot E}{\hbar^{2}} \approx 0.05 \cdot E(MeV) \quad [fm^{-2}]$$

The smaller the binding energy, the more extended is the wave function

$$\langle r^2 \rangle = \frac{1}{2 \cdot \kappa^2} \cdot (1 + \kappa \cdot R) \approx \frac{\hbar^2}{4 \cdot \mu \cdot S_n}$$

Е	κ ²	κ	1/κ ~ r
7 MeV	0.35 fm ⁻²	0.6 fm ⁻¹	1.7 fm
1 MeV	0.05 fm ⁻²	0.2 fm ⁻¹	4.5 fm
0.1 MeV	0.005 fm ⁻²	0.07 fm ⁻¹	14 fm

Halo nuclei

GSI

Change of the magic number near N=8: ¹²Be

Is the magic number changed only in halo nuclei ? No! It holds also for ¹²Be.

This observation indicates a universal evolution of the shell structure.

nucleon-nucleon residual interaction

The specific proton-neutron interaction (**monopole term of the tensor-force**) can change the single-particle order, depending on the proton-neutron ratio of the nucleus.

The strong attractive p-n force between $J_{>}$ and $J_{<}$ orbitals ($\begin{cases} >: \ell + 1/2 \\ <: \ell - 1/2 \end{cases}$ for example, $\pi p_{3/2}$ and $\nu p_{1/2}$)

The deuteron

The deuteron is an ideal candidate for tests of our basic understanding of nuclear physics

- The measured *nuclear spin* of the deuteron is J = 1
- The *parity* of the deuteron is *positive*, only even *angular momenta* $\ell = 0$ and $\ell = 2$.
- The *magnetic moment* of the deuteron yields to $\mu = 0.8574 \cdot \mu_K$ The angular momentum has to 4% the value of $\ell = 2$
- The deuteron is *not spherical*.

It has an experimentally determined *quadrupole moment* of Q = 0.00282 eb.

A free neutron and a free proton have no electric quadrupole moment.

The deuteron can only possess a quadrupole moment because of its angular momentum of $\ell = 2$.

$$Q_{zz} = \int \rho(\vec{r}) \cdot r^2 \cdot (3 \cdot \cos^2\theta - 1) d\tau$$

A pure $\ell = 0$ wave function has a vanishing quadrupole moment, because of its rotational symmetry.

The nuclear force is spin dependent !

The nuclear forces must raise a torsional moment, that depend on the radius r and the angle θ .

If the nuclear force depends on r and θ , then there is a non-central force component a **Tensor force**

Simplified picture of monopole effects of the tensor force

nucleon-nucleon residual interaction

The example shows the proton configuration $(0p_{3/2})$ of ¹⁴C₈. The more protons are in $0p_{3/2}$ orbital, the more the $0p_{1/2}$ neutron orbital will be attracted and the shell closure at N=8 develops.

For ¹²Be₈ the proton orbital $0p_{3/2}$ will be emptied, the interaction is weaker and the neutron orbital $0p_{1/2}$ will be lifted.

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005), Phys. Rev. Lett. 97, 162501 (2006)

The effect of the tensor force on the ls-coupling

The effect of the tensor force on the ls-coupling

 $\pi d_{3/2}$ by +1.2 MeV.

Application to other shells

β -DECAY SCHEMES OF VERY NEUTRON-RICH SODIUM ISOTOPES AND THEIR DESCENDANTS

D. GUILLEMAUD-MUELLER*, C. DETRAZ*, M. LANGEVIN and F. NAULIN

Institut de Physique Nucléaire, BP 1, F-91406 Orsay, France

M. DE SAINT-SIMON, C. THIBAULT and F. TOUCHARD

651

Status of the art... N=28 N=20 40Ca Doubly Magic \rightarrow - spherical Z=20 ⁴⁰Ca ⁴⁸Ca 44Ca ⁴⁶Ca - high 2+ energy 50 Sn - low B(E2) 38Ar Z=18 ⁴⁶Ar N=20 Z=16 ³⁶5 ⁴⁴S **'E(2+)** [MeV] Z=14 ³⁴Si ⁴²Si Mg Ca Z=12 ³²Mg ⁴⁰Mg Ne S Z=10 0 ³⁰Ne ³⁸Ne 12 16 20 24 Ν Evidence of the nuclear shell model: high energies of the 2_1^+ states for nuclei with magic numbers

GSI

N=20

N=20

 ${}^{36}_{16}S_{20}$

N=20

N=20

N=20

N=20

N=20

GSÍ

The shell structure is strongly influenced by the attractive p-n force between $J_{>}$ and $J_{<}$ orbitals (π d_{5/2} and ν d_{3/2}).

Nuclear shell structure

Experimental evidence of the magic number

N=28

Evidence of the nuclear shell model:

high energies of the 2_1^+ state

for nuclei with magic number

Nuclear field theory: Nuclear many-particle probl

Nuclear many-particle problem will be solved relativistically with the consequence: attractive scalar field (S-V) repulsive vector field (S+V)

Relativistic quasi-particle random phase approximation

Nuclear shell structure Large similarity between three numbers of the HO-shell model

O. S., MG Porquet PPNP (2008)

Same mechanism :

- small 2⁺ energies for N=8, 20 and 40
- Inversion between normal and intruder states for N=40
- Search for a (super)deformed 0^+_2 state in ⁶⁸Ni
- Proof the extreme deformation of ⁶⁴Cr

Nuclear shell structure

development of the HO-shell closure

INTERACTION

SPIN –FLIP $\Delta \ell = 0$

Nuclear shell structure

Signatures near closed shells

Sn100	Sn101	Sn102	Sn103	Sn104 20.8 s	Sn105	Sn106 115 :	Sn107 2.90 m	Sn108 10.30 m	Sn109 18.0 m	Sn110 4.11 b	Sn111 35.3 m	Sn112	Sn113 115.09 d	Sn114	Sn115	Sn116	Sn117	Sn118	Sn119	Sn120	Sn121 27.06 h	Sn122	Sn123 129.2 d	Sn124	Sn125 9.64 d	Sn126 1E+5 y	Sn127 2.10 h	Sn128 59.07 m	Sn129 2.23 m	Sn130 3.72 m	Sn131 56.0 :	Sn132
0+		0+		0+		0+	(5/2+)	0+	5/2(+)	0+	7/2+	0+	1/2+ *	0+	1/2+	01	1/2+	0+	1/2+	0+	3/2÷ *	0+	* *	0+	11/2- *	0+ 1	(11/2-) *	0+ *	(3/2+) *	0+ *	(3/2+) *	0+
EC _P	ECp	EC	EC	EC	ECo	EC	EC	EC	EC	EC	EC	0.97	EC	0.65	0.34	14.53	7.68	24.23	8.59	32.59	B	4.63	B	5.79	8	B ⁻	B	B	8	B	B	8-
In99	In100	Inl01	In102	In103	In104	In105	In106	In107	In108	In109	Inl10	Inlll	Inll2	Inus	Inll4	In115	Inll6	In117	In118	Inl19	In120	In121	In122	In123	In124	Inl25	In126	In127	In128	In129	In130	In131
	7.0 s	15.1 s	22 5	00 1	1.80 m	5.07 m	0.2 m	32.4 m	58.0 m	4.2 6	439 6	2.8047 d	14.97 m		713 -	4.41E+14 y	14.10 :	43.2 m	5.0 s	2.4 m	0.08 s	23.1 5	1.5 1	5.98 s	3.11.5	2.30 :	1.00 :	1.09 :	0.84 5	0.01 5	0.32 5	0.282 ±
			(01)	() () () () () () () () () () () () () (*	*	/T *	*	/ * *	*	·* *	*	* *	*	***	8 *	* *	*	* *	***	* *	*	* *	*	** ±	* 2(1)	*	*	*	*	***	*
	ECp	ECp	ECp	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,B	4.3	EC,B	86.7	EC,β	β	β	β	β	β	β	β	β	β-	β	β=	β=	βa	βna	βa
Cd98	Cd99	Cd100	Cd101	Cd102	Cd103	Cd104	Cd105	Cd106	Cd107	Cd108	Cd109	Cd110	Ca111	Cd112	Cd113	Cd114	Cd115	Cd116	Cd117	Cd118	Cd119	Cd120	Cd121	Cd122	Cd123	Cd124	Cd125	Cd126	Cd127	Cd128	Cd129	Cd130
9.2 :	16 s	49.1 :	1.36 m	5.5 m	7.3 =	57.7 🖿	55.5 m		6.50 h		462.6 d				7.7E+15 y		53.46 h		2.49 h	50.3 m	2.69 m	50.80 ±	13.5 :	5.24 s	2.10 :	1.25 :	0.05 s	0.506 s	0.37 s	0.34 =	0.27 =	0.20 s
0+	(5/2+)	0+	(5/2+)	0+	(5/2+)	0+	5/2+	0÷	5/2+	0+	5/2+	0+	1/2+	0+	a 1/2+	e+	1/2+ *	e+-	1/2+ *	0+	3/2+ *	0+	(3/2+) *	0+	(3/2)+ *	0+	(3/2+) *	0+	(3/2+)	0+	(3/2+)	0+
EC	ECp,ECa,	EC	EC	EC	EC	EC	EC	1.25	EC	0.89	EC	12.49	12.80	24.15	P 111	28.73	β-	7.49	β.	β.	β	β	β-	β-	β	β-	β.	β	β.	β	β	βm

two proton holes in the $g_{9/2}$ orbit

No dramatic shell quenching!

0+

A. Jungclaus et al., Phys. Rev. Lett. 99 (2007), 132501

 $()^+$

Isoscalar neutron-proton pairing in 92Pd

B. Cederwall et al., Nature 469 (2011), 68 T.S. Brock et al., Phys. Rev. C82 (2010) 061309

New magic numbers

The shell evolution expected for medium-mass and heavy nuclei

The influence to r – process abundances

Rare Isotope Beam Capabilities Worldwide

Nuclear Physics News International

Volume 19, Issue 2 April-June 2009

feature article

RISING: Gamma Spectroscopy Far from Stability

