Outline: Nuclear shell model with residual interaction

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. experimental single-particle energies
- 2. coupling of two angular momenta
- 3. δ-interaction pairing
- 4. generalized seniority scheme
- 5. signatures near closed shells

Evolution of nuclear structure (as a function of nucleon number)

Shell model with residual interaction

 $H = H_0 + H_{residual}$

Start with 2-particle system, that is a nucleus ,,doubly magic nucleus + 2 nucleons"

 $H_{residual} = H_{12}(r_{12})$

Consider two identical valence nucleons with j_1 and j_2

Two questions:

What total angular momenta $j_1 + j_2 = J$ can be formed?

What are the energies of states with these J values?

Nuclear shell structure

Hans-Jürgen Wollersheim - 2022

Experimental single-particle energies

Experimental single-particle energies

Experimental single-particle energies

²⁰⁹Pb

energy of shell closure:

$$BE(^{209}Bi) - BE(^{208}Pb) = E(1h_{9/2})$$

$$BE(^{207}Tl) - BE(^{208}Pb) = -E(3s_{1/2})$$

$$E(1h_{9/2}) - E(3s_{1/2}) = BE(^{209}Bi) + BE(^{207}Tl) - 2 \cdot BE(^{208}Pb)$$

$$= -4.211MeV$$

$$BE(^{209}Pb) - BE(^{208}Pb) = E(2 g_{9/2})$$

$$BE(^{207}Pb) - BE(^{208}Pb) = -E(3 p_{1/2})$$

$$E(2 g_{9/2}) - E(3 p_{1/2}) = BE(^{209}Pb) + BE(^{207}Pb) - 2 \cdot BE(^{208}Pb)$$

$$= -3.432$$

Level scheme of ²¹⁰Pb

 $\begin{array}{lll} \textbf{j_1} + \textbf{j_2} & \textbf{all values from:} & j_1 - j_2 & \text{to} & j_1 + j_2 & (j_1 = j_2) \\ \\ \text{Example:} & j_1 = 3, \, j_2 = 5; & \text{J} = 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8 \\ \\ \textbf{BUT:} & \text{For} & j_1 = j_2; & \text{J} = 0, \, 2, \, 4, \, 6, \, \dots \, (\, 2j - 1) & (\text{Why these?}) \\ \end{array}$

How can we know which total angular momenta J are observed for the coupling of two identical nucleons in the same orbit with angular momentum j?

Several methods: easiest is the "m-scheme".

$j_1 = 7/2$	$j_2 = 7/2$		
m_1	m_2	M	J
7/2	5/2	6]	
7/2	3/2	5	
7/2	1/2	4	
7/2	-1/2	3	6
7/2	-3/2	2	
7/2	-5/2	1	
7/2	-7/2	0 _	
5/2	3/2	4	
5/2	1/2	3	
5/2	-1/2	2	4
5/2	-3/2	1	
5/2	-5/2	0	
3/2	1/2	2	
3/2	-1/2	1	2
3/2	-3/2	0 _	
1/2	-1/2	0	0

Table 5.1 *m scheme for the configuration* $|(7/2)^2 J\rangle^*$

* Only positive total M values are shown. The table is symmetric for M < 0.

Coupling of two angular momenta

Residual interaction - pairing

> Spectrum of ²¹⁰Pb: $^{208}_{82}Pb_1$ $|g_{9/2}^2; J = 2,4,6,8$ $\nu = 2$ (two u

 ${}^{208}_{82}Pb_{126}$ core + 2 neutrons

(two unpaired nucleons)

> Assume pairing interaction in a single-j shell

$$\langle j^2 J M_J | V_{pairing}(r_1, r_2) | j^2 J M_J \rangle = \begin{cases} -\frac{1}{2} (2j+1) \cdot g & \nu = 0, J = 0\\ 0, & \nu = 2, J \neq 0 \end{cases}$$

For the ground state the energy eigenvalue is none-zero; all nucleons paired (v=0) and spin J=0.

The δ-interaction yields a simple geometrical expression for the coupling of two nucleons

 $Pairing-\delta\text{-interaction}$

$$\Delta E(j_1 j_2 J) = \langle j_1 j_2 JM | V_{12} | j_1 j_2 JM \rangle = \frac{1}{\sqrt{2J+1}} \langle j_1 j_2 J | | V_{12} | | j_1 j_2 J \rangle$$

wave function:
$$\varphi(n\ell m) = \frac{1}{r} R_{n\ell}(r) \cdot Y_{\ell m}(\theta, \phi)$$

interaction:
$$V_{12}(\delta) = \frac{-V_0}{r_1 r_2} \delta(r_1 - r_2) \,\delta(\cos\theta_1 - \cos\theta_2) \,\delta(\phi_1 - \phi_2)$$

$$\Delta E(j_1 j_2 J) = -V_0 \cdot F_R(n_1 \ell_1 n_2 \ell_2) \cdot A(j_1 j_2 J)$$

with
$$F_R(n_1\ell_1n_2\ell_2) = \frac{1}{4\pi}\int \frac{1}{r^2}R_{n_1\ell_1}^2(r)R_{n_2\ell_2}^2(r)\,dr$$

and
$$A(j_1j_2J) = (2j_1+1) \cdot (2j_2+1) \cdot \begin{pmatrix} j_1 & j_2 & J \\ 1/2 & -1/2 & 0 \end{pmatrix}^2$$

A. de-Shalit & I. Talmi: Nuclear Shell Theory, p.200

δ-interaction (semiclassical concept)

 $J^2 = j_1^2 + j_2^2 + 2|j_1||j_2|cos\theta$

$$\cos\theta = \frac{J^2 - j_1^2 - j_2^2}{2|j_1||j_2|} = \frac{J(J+1) - j_1(j_1+1) - j_2(j_2+1)}{2\sqrt{j_1(j_1+1)j_2(j_2+1)}}$$

$$cos\theta \cong \frac{J^2 - 2j^2}{2j^2}$$
 for $j_1 = j_2 = j$ and $j, J \gg 1$

 $\theta = 0^0$ belongs to large *J*, $\theta = 180^0$ belongs to small *J*

example $h_{11/2}^2$: J=0 θ =180°, J=2 θ ~159°, J=4 θ ~137°, J=6 θ ~114°, J=8 θ ~ 87°, J=10 θ ~ 49°

$$\sin\theta = \sqrt{1 - \cos^2\theta} = \frac{J}{j} \left[1 - \frac{J^2}{4j^2} \right]^{1/2} \qquad \qquad \sin\frac{\theta}{2} = \left[(1 - \cos\theta)/2 \right]^{1/2} = \left(1 - \frac{J^2}{4j^2} \right)^{1/2}$$

$$\begin{pmatrix} j & j & J \\ 1/2 & -1/2 & 0 \end{pmatrix}^2 \approx \left(1 - \frac{J^2}{4j^2} \right) \frac{1}{\pi} \frac{1}{Jj \left(1 - \frac{J^2}{4j^2} \right)^{1/2}} = \frac{\sin^2(\theta/2)}{\pi \cdot j^2 \cdot \sin\theta} = \frac{\tan(\theta/2)}{\pi \cdot j^2}$$

Pairing δ-interaction

 δ -interaction yields a simple geometrical explanation for **Seniority-Isomers:**

$$\Delta E \sim -V_o \cdot F_R \cdot \tan\left(\frac{\theta}{2}\right)$$

for T=1, even J

energy intervals between states 0^+ , 2^+ , 4^+ , ...(2*j*-1)⁺ decrease with increasing spin.

GSI

Isomeric states in ¹⁰⁶Sn – ¹¹²Sn

Generalized seniority scheme

Seniority quantum number v is equal to the number of unpaired particles in the j^n configuration, where n is the number of valence nucleons.

energy spacing between v=2 and ground state (v=0, J=0):

$$E(j^n, \nu = 2, J) - E(j^n, \nu = 0, J = 0) = \langle j^2 J | V | j^2 J \rangle + \frac{n-2}{2} \cdot V_0 - \frac{n}{2} \cdot V_0$$

= $\langle j^2 J | V | j^2 J \rangle - V_0$ independent of **n**

energy spacing within v=2 states:

$$E(j^n, \nu = 2, J) - E(j^n, \nu = 2, J') = \left[\langle j^2 J | V | j^2 J \rangle + \frac{n-2}{2} \cdot V_0 \right] - \left[\langle j^2 J' | V | j^2 J' \rangle + \frac{n-2}{2} \cdot V_0 \right]$$
$$= \langle j^2 J | V | j^2 J \rangle - \langle j^2 J' | V | j^2 J' \rangle \qquad \text{independent of } \mathbf{n}$$

G. Racah et al., Phys. Rev. 61 (1942), 186 and Phys. Rev. 63 (1943), 367

Seniority quantum number v is equal to the number of unpaired particles in the j^n configuration, where n is the number of valence nucleons.

E2 transition rates:
$$B(E2; J_i \to J_f) = \frac{1}{2 \cdot J_i + 1} \cdot \langle J_f ||Q||J_i \rangle^2$$
$$\langle j^n J = 2||Q||j^n J = 0 \rangle^2 = \left[\frac{n \cdot (2j + 1 - n)}{2 \cdot (2j - 1)}\right] \cdot \langle j^2 J = 2||Q||j^2 J = 0 \rangle^2$$
$$= \left[\frac{(2j + 1)^2}{2 \cdot (2j - 1)}\right] \cdot f \cdot (1 - f) \cdot \langle j^2 J = 2||Q||j^2 J = 0 \rangle^2 \quad f = \frac{n}{2j + 1} \to 1 \text{ for large } n$$

Seniority quantum number v is equal to the number of unpaired particles in the j^n configuration, where n is the number of valence nucleons.

Generalized seniority scheme

Seniority quantum number v is equal to the number of unpaired particles in the j^n configuration, where n is the number of valence nucleons.

E2 transition rates that do not change seniority (v=2):

$$\langle j^{n} J || Q || j^{n} J' \rangle = \left[\frac{2j+1-2n}{2j-3} \right] \cdot \langle j^{2} J || Q || j^{2} J' \rangle$$

$$= \frac{2j+1}{2j-3} \cdot [1-2f] \cdot \langle j^{2} J || Q || j^{2} J' \rangle$$

8⁺(g_{9/2})⁻² seniority isomers in ⁹⁸Cd and ¹³⁰Cd

two proton holes in the $g_{9/2}$ orbit

No dramatic shell quenching!

A. Blazhev et al., Phys. Rev. C69 (2004) 064304

0+

A. Jungclaus et al., Phys. Rev. Lett. 99 (2007), 132501

Spin isomer in ⁹⁸Cd

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

Core excited states in ⁹⁸Cd

A. Blazhev et al., Phys.Rev.C69 (2004) 064304

Nature of nucleon pair correlations

Does T=0 pairing exist?

The strong nuclear force is observed to be roughly equally strong between a proton-proton(pp) pair and a neutron-neutron(nn) pair (charge symmetry) and
 on average equally strong between a proton-neutron(pn) pair as between pp and nn pairs (charge independence).

What is the ground state structure of N=Z nuclei below ¹⁰⁰Sn

This would lead to a normal seniority type spectrum of low-lying excited states

Shell Model calculations predict strong np-interactions

Model space: $g_{9/2}$ (and $f_{5/2}$, $p_{3/2}$, $p_{1/2}$)

J. Blomqvist et al.

Pd level systematics near N=Z

GSI

Experimental results and shell model calculations for ⁹²Pd

experimental results

shell model calculations by Stockholm group

B. Cederwall et al., Nature 469 (2011) 68

evidence that T=0 mode of the np-interactions play a role in ^{92}Pd ?

Experimental results and shell model calculations

	10+ 4,072	10+	4,06510+ 4,0	52 10	+ 4,05210	⁺ 4,065	1	0* 3,862	10+ 3,796	10+ 4,131	10+ 3,784
	8 <u>* 3,127</u>	3,257				}	10+ 3,257				
(6+) 2,536	6 <u>+</u> 2,466 8+ 6+	2,600 8 ⁺ 6 ⁺ 2,110 4 ⁺	2,749 8+ 2,6 6+	$\begin{array}{c c} 33 & 8^+ \\ 6^{\mp} \\ 12 & 4^+ \\ \end{array}$	2,635 8 2,223 6	2,588	8 <u>+ 2,792</u> 8 6 <u>+ 2,374</u> 6	⁺ 2,750 ⁺ 2,330	8 ⁺ 2,704 6 ⁺ 2,380	8 ⁺ 2,636 6 ⁺ 4 ⁺ 2,224	8 ⁺ 2,530 6 [±] 4 ⁺ 2,099
(4+) 1,786	4 ⁺ 1,708 20 4 ⁺	1,518 2 ⁺	2* 1,4 1,171	17 2*	1,405	• 1,199	4* 1,709 4	+ 1,682 13	4 <u>+</u> 1,720	8.2 2 ⁺ 1,460 7.5	2+ 1,415
(2+) 874	2 <u>+ 878</u> 2 <u>+</u> 15	797					2*64 2	2* 861 11	2+ 814		
00	0+00+	0 0*	0 0+ 0	0+	0 0	• 0	0*0 0	0+0	0+0	00	0+0
⁹² Pd Exp.	⁹² Pd SM	$P^{92}Pd = 0 T = 0$	Pd ⁹² Pd = 1 No np	i n	⁹⁴ Pd No np	⁹⁴ Pd <i>T</i> = 1	⁹⁴ Pd <i>T</i> = 0	⁹⁴ Pd SM	⁹⁴ Pd Exp.	⁹⁶ Pd SM	⁹⁶ Pd Exp.

 $T_z = +1$ nucleus ⁹⁴Pd

 $T_{z,\pi} = -1/2$ for protons $T_{z,\nu} = +1/2$ for neutrons

Hans-Jürgen Wollersheim - 2022

New manifestation of T=0 np "pairing"?

Special deuteron-hole cluster like ground states imply significant deformation

$B(E2;0^+\rightarrow 2^+)$ – sensitive probe of neutron-proton interactions

Shell model calculations by J. Blomqvist, R. Liotta, C. Qi

Te experimental $E(2^+)$ and $B(E2; 2^+ \rightarrow 0^+)$

Quadrupole collectivity The traditional view of the mechanism behind deformation and collectivity: long range np QQ interactions

Enhancement of collectivity due to np (short-range) pairing correlations predicted in new calculations by D.S Delion, R. Liotta *et al*.

 Evidence for onset of collectivity, possibly induced by np pairing in neutron deficient Te and Xe nuclei

 T_z =1 nucleus ¹⁰⁶Te : B. Hadinia, B. Cederwall *et al.*, Phys. Rev. C 72, 041303 (2005)

Xe experimental $E(2^+)$ and $B(E2; 2^+ \rightarrow 0^+)$

Quadrupole collectivity The traditional view of the mechanism behind deformation and collectivity: long range np QQ interactions

Enhancement of collectivity due to np (short-range) pairing correlations predicted in new calculations by D.S Delion, R. Liotta *et al*.

 Evidence for onset of collectivity, possibly induced by np pairing in neutron deficient Te and Xe nuclei

T_z=1 nucleus ¹¹⁰Xe; M. Sandzelius, B. Hadinia,, B. Cederwall *et al.*, Phys. Rev. Lett. 99, 022501 (2007)

Appendix

$$B(E2; J_i \to J_f) = \frac{1}{2 \cdot J_i + 1} \cdot \langle J_f ||Q||J_i \rangle^2$$

Seniority changing: $\Delta v = 2$

$$\langle j^n J = 2 ||Q|| j^n J = 0 \rangle^2 = \left[\frac{n \cdot (2j+1-n)}{2 \cdot (2j-1)} \right] \cdot \langle j^2 J = 2 ||Q|| j^2 J = 0 \rangle^2$$

$$= \left[\frac{(2j+1)^2}{2\cdot(2j-1)}\right] \cdot f \cdot (1-f) \cdot \langle j^2 J = 2 ||Q|| j^2 J = 0 \rangle^2 \quad f = \frac{n}{2j+1} \to 1 \quad for \ large \ n$$

Seniority conserving: $v \rightarrow v$

$$\begin{aligned} \langle j^{n} J \| Q \| j^{n} J' \rangle &= \left[\frac{2j+1-2n}{2j+1-2\nu} \right] \cdot \langle j^{2} J \| Q \| j^{2} J' \rangle \\ &= \frac{2j+1}{2j+1-2\nu} \cdot [1-2f] \cdot \langle j^{2} J \| Q \| j^{2} J' \rangle \quad f = \frac{n}{2j+1} \to 1 \quad for \ large \ n \end{aligned}$$

Example: quadrupole moments this is why nuclei are prolate at the beginning of a shell and oblate at the end.

